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For in much wisdom is much grief, and he
that increases knowledge increases sorrow.

Ecclesiastes 1:18

Of making many books there is no end, and
much study is a weariness of the flesh.

Ecclesiastes 12:12





Preface

The title of this book, Fundamentals of Algebraic Topology, summarizes its aims
very well.

In writing this book we have attempted to provide the reader with a guide to the
fundamental results of algebraic topology, but we have not attempted to provide an
exhaustive treatment.

Our choice of topics is quite standard for an introductory book on algebraic
topology, but a description of our approach is in order.

We begin with a short introductory chapter, with basic definitions. We assume
the reader is already familiar with basic notions from point-set topology, and take
those for granted throughout the book.

We then devote Chap. 2 to the fundamental group, including a careful discussion
of covering spaces, van Kampen’s theorem, and an application of algebraic topology
to obtain purely algebraic results on free groups. In general, algebraic topology
involves the use of algebraic methods to obtain topological information, but this
is one instance in which the direction is reversed.

We then move on to discuss homology and cohomology. Here we follow the
axiomatic approach pioneered by Eilenberg and Steenrod. In Chap. 3 we introduce
the famous Eilenberg-Steenrod axioms. Indeed, in this chapter we consider arbitrary
generalized homology theories and derive results that hold for all of them. Then,
in Chap. 4, we specialize to ordinary homology theory with integer coefficients,
and derive results and applications in this situation, still proceeding axiomatically.
Of particular note are such important results as the Brouwer fixed point theorem
and invariance of domain, which follow from the existence of a homology theory,
not from the details of its particular construction. Also of particular note is our
introduction of CW complexes and our development of cellular homology, again
from the axioms.

Of course, at some point we must show that a homology theory actually exists,
and we do that in Chap. 5, where we construct singular homology. We deal with
the full panoply here – homology, cohomology, arbitrary coefficients, the Künneth
formula, products, and duality.

Manifolds are a particularly important class of topological spaces, and we devote
Chap. 6 to their study.
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viii Preface

Finally, in Chap. 7 we give a short introduction to homotopy theory.
Arguments in algebraic topology involve a mixture of algebra and topology. But

some arguments are purely algebraic, and, indeed, algebraic topology spawned a
new branch of algebra, homological algebra, to deal with the algebraic issues it
raised. While it is not always possible to completely separate the topology and the
algebra, in many instances it is. In those instances, we find it advantageous to do so,
as it better reveals the logical structure of the subject. Thus we have included the
basic algebraic constructions and results in an appendix, rather than mixing them in
with the rest of the text.

In our discussion of Poincaré duality on manifolds, we need some basic facts
about bilinear forms, and we summarize them in a second appendix.

Algebraic topology also spawned the language of categories and functors. We
have tended to avoid this language in the text, as it is mostly (though not entirely)
superfluous for our purposes here. But it is illuminating language, and essential for
students who wish to go further, and so we have included a third appendix that
introduces it.

There are several points we wish to call the reader’s attention to. The first is that
we have not felt compelled to give the proofs of all the theorems. To be sure, we
give most of them (and leave a few of them as exercises for the reader), but we
have omitted some that are particularly long or technical. For example, we have not
proved van Kampen’s theorem, nor have we proved that singular homology satisfies
the excision axiom. The second is that we have not always stated results in the
maximum generality. For example, in developing products in homology and coho-
mology we have restricted the pairs of spaces involved, and the coefficients of the
(co)homology groups, to the situations in which they are most often used in practice.

The third is that we have hewed to the axiomatic foundations of the subject. Since
its inception over a century ago, algebraic topology has built a vast superstructure
on these foundations, a superstructure we hope the student will go on to investigate.
But we do not investigate it here. For example, we say very little about techniques
for computing homotopy groups.

However, we provide a short bibliography where the reader can find the material
we omit, as well as material that is beyond our scope. (In other words, the reader
who wants to see this, or wants to study further in algebraic topology, should consult
these books.)

Our notation and numbering scheme here are rather standard, and there is little
to be said. But we do want to point out that we use A ⊆ B to mean that A is a subset
of B and A ⊂ B to mean that A is a proper subset of B.

Lemmas, propositions, theorems, and corollaries are stated in italics, which
clearly delimits them from the text that follows. Similarly, proofs are delimited by
the symbol�� at the end. But there is usually nothing to delimit definitions, examples,
and remarks, which are stated in roman. We use the symbol ♦ at the end of these for
that purpose.

Bethlehem, PA, USA Steven H. Weintraub
October 2013
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Chapter 1
The Basics

1.1 Background

As this is a book on topology, all spaces will be topological spaces, and all maps (i.e.,
functions) will be continuous. Basic topological spaces we will consider include:

R
n n-dimensional Euclidean space

Dn the closed unit disk in R
n

D̊n the open unit disk in R
n

Sn−1 the unit sphere in R
n

S1 the unit circle in C

I the interval [0,1]

∗ the space consisting of a singe point

/0 the empty space

A pair (X ,A) consists of a space X and a subspace A. We let f : X → Y denote a
map from the space X to the space Y . Similarly, we let f : (X ,A)→ (Y,B) denote a
map from the pair (X ,A) to the pair (Y,B), i.e., a map f : X → Y whose restriction
is f |A : A → B, or more simply, a map f : X → Y with f (A)⊆ B.

For most purposes we can identify the pair (X , /0) with the space X . For example,
with this identification, we could simply have defined f : (X ,A)→ (Y,B) and then
the definition of f : X → Y would just have been a special case. (But this logical
economy would have been at the expense of clarity.)

A homeomorphism f : X → Y is a continuous map with a continuous inverse
g : Y → X , and a homeomorphism f : (X ,A) → (Y,B) is defined similarly.

© Springer International Publishing Switzerland 2014
S.H. Weintraub, Fundamentals of Algebraic Topology, Graduate Texts
in Mathematics 270, DOI 10.1007/978-1-4939-1844-7__1
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2 1 The Basics

In this situation the spaces X and Y , or the pairs (X ,A) and (Y,B), are said to
be homeomorphic, which we write as X ≈ Y or (X ,A)≈ (Y,B). As basic examples
we have:

D̊n ≈ R
n,

Dn/Sn−1 ≈ Sn.

Here, as usual, for a pair (X ,Y ) we let X/Y denote the quotient space (of course
with the quotient topology). We also have the homeomorphism

f : [0,1]/({0}∪{1})−→ S1

given by f (t) = exp(2π it), which we will often be (implicitly or explicitly) using.
Given two spaces X and Y , we let X ×Y be their product (of course with the

product topology). We define the product of two pairs by

(X ,A)× (Y,B) = (X ×Y,X ×B∪A×Y).

1.2 Homotopy

The basic relation studied in algebraic topology is that of homotopy.

Definition 1.2.1. Two maps f0 : (X ,A) → (Y,B) and f1 : (X ,A) → (Y,B) are
homotopic, written f0 ∼ f1, if there is a map

F : (X ,A)× I −→ (Y,B)

with F(x,0) = f0(x) and F(x,1) = f1(x) for every x ∈ X . ♦
Note that F : (X ,A)× I → (Y,B) is equivalent to F : X → Y with f (a, t) ∈ B for

every a ∈ A and t ∈ I.
It is psychologically very helpful to think of t ∈ I as “time” and ft : (X ,A) →

(Y,B) by ft(x) = f (x, t) being “ f at time t”. With this notion, a homotopy is a
deformation through time of f0 into f1. It is important to note that while each ft must
be continuous, the condition that F be continuous is stronger than that. For example,
the maps f0 : {0,1} → {0,1} given by f0(0) = 0 and f0(1) = 1, and f1 : {0,1} →
{0,1} given by f1(0) = f1(1) = 0 are not homotopic, but F : {0,1}× I → {0,1}
defined by f (x, t) = 0 if (x, t) �= (1,1) and F(1,1) = 1 has each ft continuous.

Lemma 1.2.2. Homotopy is an equivalence relation.

Proof. Reflexive: f is homotopic to f via the homotopy of waiting (i.e., changing
nothing) for one unit of time.



1.2 Homotopy 3

Symmetric: If f is homotopic to g, then g is homotopic to f via the homotopy of
running the original homotopy backwards in time.

Transitive: If f is homotopic to g and g is homotopic to h, then f is homotopic
to h via the homotopy of first doing the original homotopy from f to g twice as
fast in the first half of the interval of time, and then doing the original homotopy
from g to h twice as fast in the second half of the interval of time. ��
We have a closely allied definition.

Definition 1.2.3. Two maps f0 : X → Y and f1 : X → Y are homotopic rel A, where
A is a subspace of X , written f0 ∼A f1, if there is a map

F : X × I −→ Y

with F(x,0) = f0(x), F(x,1) = f1(x) for every x ∈ X , and also F(a, t) = f0(a) =
f1(a) for every a ∈ A and every t ∈ I. ♦

In other words, in a homotopy rel A, the points in A never move under the
deformation from f0 to f1. By exactly the same logic, homotopy rel A is an
equivalence relation.

Similar to the relationship of homotopy between maps there is a relationship
between spaces.

Definition 1.2.4. Two pairs (X ,A) and (Y,B) are homotopy equivalent if there are
maps f : (X ,A) → (Y,B) and g : (Y,B) → (X ,A) such that the composition g f :
(X ,A) → (X ,A) is homotopic to the identity map id : (X ,A) → (X ,A) and f g :
(Y,B)→ (Y,B) is homotopic to the identity map id : (Y,B)→ (Y,B). ♦

As a special case of this we have the following.

Definition 1.2.5. A subspace A of X is a deformation retract of X if there is a
retraction g : X → A (i.e., a map g : X → A with g(a) = a for every a ∈ A) such
that g is homotopic to the identity map id : X → X . A subspace A of X is a strong
deformation retract if there is a retraction g : X → A such that g is homotopic rel A
to the identity map id : X → X . ♦
Lemma 1.2.6. If A is a deformation retract of X then the inclusion map i : A → X
(defined by i(a) = a ∈ X for every a ∈ A) is a homotopy equivalence.

Example 1.2.7. Let us regard X : Rn −{(0, . . . ,0)} as the space of nonzero vectors
{v ∈ R

n | v �= 0}. Then A = Sn−1 = {v ∈ R
n | ‖v‖= 1} is a subspace of X , and is a

strong deformation retract of X . The map

F : X × I −→ A

given by

F(v, t) = ‖v‖t(v/‖v‖)



4 1 The Basics

gives a homotopy rel A from the retraction f0(v) = v/‖v‖ to the identity map
f1(v) = v. ♦

We have the following common language, which we will use throughout.

Definition 1.2.8. Spaces X and Y that are homotopy equivalent are said to be of the
same homotopy type. ♦
Definition 1.2.9. A space X is contractible if it has the homotopy type of a point
∗, or, equivalently, if for some, and hence for any, point x0 ∈ X , x0 is a deformation
retract of X . ♦

Here is an important construction.

Definition 1.2.10. Let X be a space. The cone on X is the quotient space cX =
X × I/X ×{1}. ♦
Example 1.2.11. For any n ≥ 1, cSn−1 is homeomorphic to Dn. ♦
Lemma 1.2.12. For any space X, cX is contractible.

Proof. Let F : cX × I → cX be defined by

F((x,s), t) = (x,max(s, t)).

��

1.3 Exercises

Exercise 1.3.1. (a) Construct a homeomorphism h : D̊n → R
n.

(b) Construct a homeomorphism h : Dn/Sn−1 → Sn.

Exercise 1.3.2. Let H be the “southern hemisphere” in Sn, H = {(x1, . . . ,xn+1) ∈
Sn | xn+1 ≤ 0}. Let p be the “south pole” p = (0,0, . . . ,0,−1) ∈ Sn. Show that the
inclusion (Sn, p)→ (Sn,H) is a homotopy equivalence of pairs.

Exercise 1.3.3. Carefully prove that homotopy is an equivalence relation
(Lemma 1.2.2).

Exercise 1.3.4. Prove Lemma 1.2.6.

Exercise 1.3.5. (a) Prove that cSn−1 is homeomorphic to Dn (Example 1.2.11).
(b) The suspension ΣX of a space X is the quotient space X × [−1,1]/∼, where the

relation ∼ identifies X ×{1} to a point and X ×{−1} to a point.
Prove that ΣSn−1 is homeomorphic to Sn.



Chapter 2
The Fundamental Group

One of the basic invariants of the homotopy type of a topological space is its
fundamental group. In this chapter we define the fundamental group of a space
and see how to calculate it. We also see the intimate relationship between the
fundamental group and covering spaces.

Throughout this chapter, all spaces are assumed to be path-connected, unless
explicitly stated otherwise.

2.1 Definition and Basic Properties

Definition 2.1.1. Let x0 ∈ X be a given point, called the base point. The fundamen-
tal group π1(X ,x0) is the set of homotopy classes of maps

f : (S1,1)−→ (X ,x0)

with composition given by h = f g where

h(eiθ ) =

⎧
⎨

⎩

f (e2iθ ) 0 ≤ θ ≤ π

g(e2i(θ−π)) π ≤ θ ≤ 2π .

Equivalently, π1(X ,x0) is the set of homotopy classes of maps

f : (I,{0}∪{1})−→ (X ,x0)

© Springer International Publishing Switzerland 2014
S.H. Weintraub, Fundamentals of Algebraic Topology, Graduate Texts
in Mathematics 270, DOI 10.1007/978-1-4939-1844-7__2
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with composition given by h = f g where

h(t) =

⎧
⎪⎨

⎪⎩

f (2t) 0 ≤ t ≤ 1
2
,

g(2t − 1)
1
2
≤ t ≤ 1.

♦
We give the equivalence explicitly. We let S1 = {exp(2π it) | 0 ≤ t ≤ 1} and note

that 1 = exp(2π i0) = exp(2π i1). If f̃ : (S1,1)→ (X ,x0) is a map, then we obtain f :
(I,{0}∪{1})→ (X ,x0) by f (t) = f̃ (exp(2π it)), and if f : (I,{0}∪{1})→ (X ,x0)
is a map, then we obtain f̃ : (S1,1)→ (X ,x0) by f̃ (exp(2π it)) = f (t).

But in the sequel we will use this identification implicitly and will not distinguish
between f̃ and f .

Lemma 2.1.2. The fundamental group π1(X ,x0) is a group.

Proof. The identity element of this group is represented by the constant map i : S1 →
{x0} and the inverse of f : (S1,1)→ (X ,x0) is represented by the map g : (S1,1)→
(X ,x0) given by g(eiθ ) = f (e−iθ ), 0 ≤ θ ≤ 2π (i.e., the map that runs around the
image of S1 in the opposite direction). ��

It is convenient, though admittedly imprecise, to write that the constant path is
the identity element of π1(X ,x0), rather than that it represents the identity, and we
will often use this language.

As an abstract group, π1(X ,x0) is independent of the choice of the basepoint x0.
More precisely, we have the following result.

Lemma 2.1.3. Let x0,x1 ∈ X. Choose a path ϕ from x0 to x1, i.e., a map ϕ : I → X
with ϕ(0) = x0 and ϕ(1) = x1. Let ϕ̄ : I → X be the map given by ϕ̄(t)=ϕ(1− t),
0 ≤ t ≤ 1. Then there is an isomorphism Φ : π1(X ,x1)→ π1(X ,x0) given as follows.
Let f : (I,{0}∪{1})→ (X ,x1). Then g = Φ( f ) is given by

g(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕ(3t) 0 ≤ t ≤ 1
3
,

f (3t − 1)
1
3
≤ t ≤ 2

3
,

ϕ̄(3t − 2)
2
3
≤ t ≤ 1.

Note that this isomorphism depends on the choice of ϕ . Also, if we choose x1 =
x0, then ϕ represents an element of π1(X ,x0), and then Φ is the inner automorphism
of π1(X ,x0) given by Φ( f ) = ϕ f ϕ−1, and conversely every inner automorphism of
π1(X ,x0) arises in this way.

A map between spaces induces a map between their fundamental groups as
follows.
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Definition 2.1.4. Let f : X → Y with f (x0) = y0. Then the induced map f∗ =
π1(X ,x0) → π1(Y,y0) is defined as follows: Let g : (S1,1) → (X ,x0) represent an
element of π1(X ,x0). Then f∗(g) is the element of π1(Y,y0) represented by the
composition f ◦ g : (S1,1)→ (Y,y0). ♦

It must be checked that f∗ is well-defined, i.e., independent of the choice of
representative g, but this is routine.

Clearly if f is a homeomorphism, then f∗ is an isomorphism. But we have a more
general result.

Theorem 2.1.5. Let f : X → Y with f (x0) = y0. If f is a homotopy equivalence,
then f∗ : π1(X ,x0)→ π1(Y,y0) is an isomorphism.

Proof. Suppose that g : Y → X with g(y0) = x0, that g f : X → X is homotopic to
the identity rel x0, and that f g : Y → Y is homotopic to the identity rel y0. Then the
theorem is very easy to prove. But we are not making that strong an assumption,
and so the proof is trickier, but we still leave it to the reader. ��
Corollary 2.1.6. Let X be a contractible space. Then π1(X ,x0) is the trivial group.

Proof. This is clearly true if X is the space consisting of the point x0 alone, as then
every f : (S1,1)→ (X ,x0) is the constant map to the point x0. Then it is also true for
X contractible by Theorem 2.1.5. ��
Theorem 2.1.7. Let x0 ∈ X and y0 ∈ Y. Then π1(X ×Y,(x0,y0)) is isomorphic to
the product π1(X ,x0)×π1(Y,y0).

Proof. Let p be the projection p : X ×Y → X and let q be the projection q : X ×Y →
Y . It is easy to check that p∗ × q∗ : π1(X ×Y,(x0,y0)) → π1(X ,x0)× π1(Y,y0) is
a homomorphism. To show that it is onto, let f : (S1,1) → (X ,x0) represent an
arbitrary element α of π1(X ,x0), and let g : (S1,1)→ (Y,y0) represent an arbitrary
element β of π1(Y,y0). Let h = f × g : (S1,1) → (X ×Y ), i.e., h(t) = ( f (t),g(t)).
Then h represents an element γ of π1(X ×Y,(x0,y0)) and p∗ × q∗(γ) = α ×β . To
show that it is one-to-one, let h : (S1,1) → (X ×Y,(x0,y0)) represent γ ∈ π1(X ×
Y,(x0,y0)) and suppose p∗ × q∗(γ) is the identity element of π1(X ,x0)×π1(Y,y0),
i.e., that f = p(h) : (S1,1)→ (X ,x0) and g = q(h) : (S1,1)→ (Y,y0) are both null-
homotopic. Let F : (S1,1)× I → (X ,x0) and G : (S1,1)× I → (Y,y0) be homotopies
between f and the constant map to x0 and between g and the constant map to y0,
respectively. Then H = F ×G : (S1,1)× I → X ×Y is a homotopy between h and
the constant map to (x0,y0), so γ is the identity element of π1(X ×Y,(x0,y0)). ��
Definition 2.1.8. The path-connected space X is simply connected if for some (and
hence any) point x0 ∈ X the fundamental group π1(X ,x0) is trivial. ♦

We have yet to show that there are spaces X that are not simply connected. We do
that, and more, in the next two sections, where we develop techniques for calculating
fundamental groups.
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2.2 Covering Spaces

Definition 2.2.1. Let X and Y be arbitrary spaces, and let p : Y → X be a map.
Then Y is a covering space of X , and p is a covering projection, if every x ∈ X has
an open neighborhood U with p−1(U) = {Vi} a union of open sets in Y , and with
p|Vi : Vi →U a homeomorphism for each i. Such a set U is said to be evenly covered
by p. ♦
Lemma 2.2.2. Let p : Y → X be a covering projection. Then

(i) For every x ∈ X, {p−1(x)} is a discrete subset of γ .
(ii) p is a local homeomorphism.

(iii) The topology on X is the quotient topology it inherts from Y via the map p.

We have defined covering spaces in complete generality. But in order to obtain a
relationship between covering spaces and the fundamental group, we shall have to
assume that both X and Y are path connected. Indeed, to get the best relationship we
shall have to restrict our attention even further. But for now we continue in general.

Example 2.2.3. (i) Let D be any discrete space. Then X ×D is a covering space
of X , with the covering projection p being a projection onto the first factor.

(iia) Let p : R→ S1 be defined by p(t) = e2π it . Then p is a covering projection.
(iib) Let n be a positive integer and let p : S1 → S1 be defined by p(z) = zn. Then p

is a covering projection.
(iii) Let G be any topological group and let H be any discrete subgroup of G.

Then the projection p : G → H\G (the space of left cosets, with the quotient
topology) is a covering projection.

(iv) Let Y be any Hausdorff topological space and let G be any finite group that
acts freely on Y , i.e., with the property that if g(y) = y for any g ∈ G and
any y ∈ Y , then g is the identity element of G. Let G\Y be the quotient space
under this action, i.e., y1,y2 ∈ Y are identified in G\Y if there is an element
g of G with g(y1) = y2, with the quotient topology. Note we are assuming
here that G acts on Y on the left. Then p : Y → G\Y is a covering projection.
More generally, let Y be any topological space and let G be any group acting
properly discontinuously on Y , i.e., with the property that every y ∈ Y has a
neighborhood U such that if g(U)∩U �= /0, then g is the identity element of
G. (Note that such an action must be free.) Then p : Y → G\Y is a covering
projection.

Note that (ii) is a special case of (iii), which is in turn a special case of (iv). ♦
A covering projection p : Y → X has two important properties.

Theorem 2.2.4 (Unique path lifting). Let p : Y → X be a covering projection.
Let x0 ∈ X be arbitrary and let y0 ∈ Y be any point with p(y0) = x0. Let f : I → X
be an arbitrary map with f (0) = x0. Then f has a unique lifting f̃ : I → Y with
f̃ (0) = y0, i.e., there is a unique f̃ : I → Y with f̃ (0) = y0 making the following
diagram commute:
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Y

p

I

f̃

f
X.

Theorem 2.2.5 (Homotopy lifting property). Let p : Y → X be a covering
projection. Let E be an arbitrary space and let F : E × I → X be an arbitrary map.
Suppose there is a map f̃ : E×{0}→Y such that p f̃ (e,0) = F(e,0) for every e∈ E.
Then f̃ extends to a map F̃ : E × I → Y making the following diagram commute:

Y

p

E × I

F̃

F
X.

The homotopy lifting property is sometimes also called the covering homotopy
property.

As a consequence of these two theorems, we can now compute some fundamental
groups.

Theorem 2.2.6. Let Y be a path connected and simply connected space and let the
group G act properly discontinuously on Y on the left. Let X be the quotient space
X = G\Y. Then for any x0 ∈ X, π1(X ,x0) is isomorphic to G.

Proof. Let p : Y → X be the quotient map. As we have observed, p is a covering
projection. Choose y0 ∈ Y with p(y0) = x0. Note that g �→ yg = g(y0) gives a 1-1
correspondence between the elements g of G and F = {y ∈ Y | p(y) = x0}, and
under this correspondence ye = y0, where e is the identity element of G. For each
g ∈ G, define f̃g : I → Y with f̃g(0) = y0 and f̃g(1) = yg. Note that such a map, f̃g

always exists as we are assuming Y is path connected. Then fg = p( f̃g) is a map
fg : I → X with fg(0) = fg(1) = x0, so represents an element [ fg] of π1(X ,x0). We
claim the map ϕ : G → π1(X ,x0) by ϕ(g) = [ fg] is an isomorphism.

(i) ϕ is well-defined. Suppose we have another map f̃ ′g : I →Y with f̃ ′g(0) = y0 and
f ′g(1) = yg. Since Y is simply connected, f̃g and f̃ ′g are homotopic rel {0,1}, so
taking the image of this homotopy under p gives a homotopy between fg and
f ′g rel {0,1}, so [ fg] = [ f ′g] ∈ π1(X ,x0).

(ii) ϕ is onto. Let α ∈ π1(X ,x0) be arbitrary and let f : (I,{0,1}) → (X ,x0)
represent α . Then by Theorem 2.2.4 f lifts to f̃ : I → Y with f̃ (0) = y0 and
p( f̃ (1)) = x0, i.e., f̃ (1) = yg for some element g of G, and then by (i) we may
take f̃g = f̃ , so ϕ( f̃ ) = g.

(iii) ϕ is one-to-one. Suppose that for some g ∈ G, fg = π( f̃g) represents the trivial
element of π1(X ,x0), i.e., it is null-homotopic rel {0,1}. Then there is a map
F : I× I → X with F(s,0) = fg(s) = p f̃g(s) for every s ∈ I, F(0, t) = F(1, t) =
x0 for every t ∈ I and F(s,1) = x0 for every s ∈ I. By Theorem 2.2.5, F lifts to
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F̃ : I× I →Y with F̃(s,0) = f̃g(s) for every s ∈ I, and pF̃(0,1) = pF̃(1, t) = x0.
Now h̃0 : I →Y by h̃0(t) = F̃(0, t) is a path in Y , and h̃0 = F̃(0,0) = f̃g(0) = y0.
Also, ph̃0(t) = x0 for every t, i.e., h̃0(t) ∈ p−1(x0) for every t ∈ I. But p−1(x0)
is a discrete space, so we must have h̃0(t) = h̃0(0) for every t, and in particular
h̃0(1) = h̃0(0) = y0. By exactly the same logic, if h̃1 : I →Y by h̃1(t) = F̃(1, t),
we must have h̃1(1) = h̃1(0). Now h̃1(0) = F̃(1,0) = f̃ (1) = yg. On the other
hand, F(s,1) is a constant path starting at x0, so by Theorem 2.2.4 lifts to a
unique path starting at F̃(0,1) = y0. Obviously, the constant path at y0 is such
a lifting, so must be the only lifting, i.e., F̃(s,1) = y0 for every s. In particular
F̃(1,1) = h̃1(1) = y0. But then y0 = yg = g(y0), and so g is the identity element
of G (as the action of G on Y is free).

(iv) ϕ is a homomorphism. Let f̃g1 : I → Y be a path from f̃g1(0) = ye to f̃g1(1) =
yg1 , and let f̃g2 : I →Y be a path from f̃g2(0) = ye to f̃g2(1) = yg2 . Let p( f̃g1) =
fg1 and p( f̃g2) = fg2 , and let α1 and α2 be the elements of the fundamental
group π1(X ,x0) represented by fg1 and fg2 , respectively. Let β = α1α2. Then
β is represented by a loop f : (I,{0,1}) → (X ,x0), which lifts to a path f̃ :
(I,{0})→ (Y,y0), and f̃ (1) = yg for some g ∈ G. We must show that g = g1g2.
But here is a path covering f : Let

f̃ (t) =

⎧
⎪⎨

⎪⎩

f̃g1(2t) 0 ≤ t ≤ 1
2
,

g1( f̃g2(2t − 1))
1
2
≤ t ≤ 1.

Note this is indeed a path as for t = 1/2 we have

g1( f̃g2(2t − 1)) = g1( f̃g2(0)) = g1(y0) = yg1 = f̃g1(1).

But then

yg = f̃ (1) = g1( f̃g2(1)) = g1(yg2) = g1(g2(y)) = (g1g2)(y) = yg1g2

so g = g1g2 as claimed. ��
Example 2.2.7. Let G = Z act on Y = R by n(r) = r + n, n ∈ G and r ∈ R. Let
X = G\Y . Then X is homeomorphic to S1, so we see that π1(S1,1) = Z. Note that
we may identify the covering projection p : Y → X with the covering projection in
Example 2.2.3(iia).

It is worth being completely explicit here. Let π : R→ S1 by π(t) = exp(2π it).
Let d be an integer and let f̃d : I → R by f̃d(t) = dt. Then we have a commutative
diagram
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R

π

I

f̃d

fd
S1

so fd = π f̃d : (I,∂ I) → (S1,1) represents d ∈ π1(S1,1) ≈ Z. Note that under the
identification of π1(X ,x0) with the set of homotopy classes of maps f : (S1,1) →
(X ,x0), the map fd is identified with the map z �→ zd . (In particular, the identity map
from S1 to itself represents a generator 1 ∈ π1(S1,1).) ♦

We will see additional examples in the next section.
Here is an important property of covering spaces, which is a generalization of

Theorem 2.2.4.

Theorem 2.2.8. Let p :Y →X be a covering projection and let y0 ∈Y and x0 ∈X be
points with p(y0) = x0. Let E be an arbitrary connected and locally path connected
space and let e0 be a point in E.

Let f : (E,e0)→ (X ,x0) be a map. Then there is a lifting f̃ : (E,e0)→ (Y,y0) if
and only if

f∗ = (π1(E,e0))⊆ p∗(π1(Y,y0))

and, if so, f̃ is unique.

(Since f = p f̃ , the condition in the theorem is obviously necessary. The point of
the theorem is that it is sufficient.)

Definition 2.2.9. Covering projections p1 : (Y1,y1
0) → (X ,x0) and p2 : (Y2,y2

0) →
(X ,x0) are equivalent if there is a homeomorphism f : (Y1,y1

0) → (Y2,y2
0) making

the following diagram commute:

(Y1, y0
1) (Y2, y0

2)

(X, x0)

f

p1

p2

♦
Corollary 2.2.10. Let Y1 and Y2 be path connected and let p1 : (Y1,y1

0) → (X ,x0)
and p2 : (Y2,y2

0) → (X ,x0) be covering projections. Then (Y1,y1
0) and (Y2,y2

0) are
equivalent if and only if

(p1)∗(π1(Y1,y
1
0)) = (p2)∗(π1(Y2,y

2
0)).

Definition 2.2.11. A covering projection p̃ : X̃ → X is a universal cover if for any
covering projection p : Y → X , p̃ lifts to a map q : X̃ → Y . ♦
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It is easy to check that in this case q itself must be a covering projection, so we
have a tower of covering projections

X̃

q

Y

X.

Corollary 2.2.12. Suppose that X has a simply connected covering space X̃ . Then
the covering projection p̃ : X̃ → X is a universal cover.

Definition 2.2.13. Let p : Y → X be a covering space with Y path connected. Then
the group of covering translations (or deck transformations) Gp is the group of
homeomorphisms f : Y → Y making the following diagram commute:

Y

p

f
Y

p

X. ♦
Lemma 2.2.14. Let y0 be any point of Y . Then f ∈ Gp is determined by f (y0).

Corollary 2.2.15. Gp acts properly discontinuously on Y .

Definition 2.2.16. Let p : Y → X be a covering projection with Y path connected.
Let x0 ∈ X . For f : (I,{0,1})→ (X ,x0) and y ∈ Y with p(y) = x0, let f̃y : (I,0) →
(Y,y) be the unique lift of f given by Theorem 2.2.4.

Then Y is a regular cover of X if for each such f , either fy(1) = y for every y
with p(y) = x0 or fy(1) �= y for every y with p(y) = x0. ♦

Informally, Y is regular if either every lift of a loop is a loop, or no lift of a loop
is a loop. (It is easy to check that the condition of being regular is independent of
the choice of x0.)

Although some results are true more generally, henceforth we shall assume that
for a covering projection p : Y → X :

Hypotheses 2.2.17. (i) X is connected.
(ii) X is locally path connected, i.e., for any x ∈ X and any neighborhood U of X,

there is an open neighborhood V ⊂U of x such that V is path connected.
(iii) X is semilocally simply connected, i.e., for any x ∈ X and any neighborhood

U of X, there is an open neighborhood V ⊂ U of x such that i∗ : π1(V,x) →
π1(U,x) is the trivial map, where i : V →U is the inclusion.

(iv) Y is connected.
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Note that (i) and (ii) imply that X is path connected. Note that since p is a local
homeomorphism, properties (ii), (iii), and (iv) hold for Y as well, and in particular
Y is also path connected.

For example, we see that these hypotheses are satisfied for the covering
projections in Example 2.2.3(ii). (However, X may be connected without Y being
connected, as in Example 2.2.3(i).)

Definition 2.2.18. The degree of the cover is the cardinality of p−1(x0). ♦
Theorem 2.2.19. Under Hypotheses 2.2.17:

(i) To each subgroup H of π1(X ,x0) there corresponds a covering projection p :
Y → X and a point y0 ∈ Y with p(y0) = x0 such that

p∗(π1(Y,y0)) = H ⊆ π1(X ,x0)

and (Y,y0) is unique up to equivalence.
(ii) The points in p−1(x0) are in 1-1 correspondence with the right cosets of H in

π1(X ,x0). Thus the degree of the cover is the index of H in π1(X ,x0).
(iii) H is normal in π1(X ,x0) if and only if Y is a regular cover. In this case

the group of covering translations is isomorphic to the quotient group
π1(X ,x0)/H.

Remark 2.2.20. By Corollary 2.2.10, this is a 1-1 correspondence. ♦
Corollary 2.2.21. Under Hypotheses 2.2.17:

Every X has a simply-connected cover p : X̃ → X, unique up to equivalence. X̃
is the universal cover of X, and X is the quotient of X̃ by the group of covering
translations. Also, if Y is any cover of X, then X̃ is a cover of Y .

Proof. This is a direct consequence of Theorem 2.2.19, and our earlier results,
taking H to be the trivial subgroup of π1(X ,x0). ��
Remark 2.2.22. This shows that, in the situation where Hypotheses 2.2.17 hold,
the covering projection p : X̃ → X from the universal cover X̃ to X is exactly the
quotient map under the action of the group Gp of covering translations, isomorphic
to π1(X ,x0), considered in Theorem 2.2.6.

The only difference is that we have reversed our point of view: In Theorem 2.2.6
we assumed Gp was known, and used it to find π1(X ,x0), while in Theorem 2.2.19
we assumed π1(X ,x0) was known, and used it to find Gp. ♦

2.3 van Kampen’s Theorem and Applications

van Kampen’s theorem allows us, under suitable circumstances, to compute the
fundamental group of a space from the fundamental groups of subspaces.
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Theorem 2.3.1. Let X = X1 ∪X2 and suppose that X1, X2, and A = X1 ∩X2 are all
open, path connected subsets of X. Let x0 ∈ A. Then π1(X ,x0) is the free product
with amalgamation

π1(X ,x0) = π1(X1,x0)∗π1(A,x0) π1(X2,x0).

In other words, if i1 : A → X1 and i2 : A → X2 are the inclusions, then π1(X ,x0)
is the free product π1(X1,x0)∗π1(X2,x0) modulo the relations (i1)∗(α) = (i2)∗(α)
for every α ∈ π1(A,x0).

As important special cases we have:

Corollary 2.3.2. Under the hypotheses of van Kampen’s theorem:

(i) If X1 and X2 are simply connected, then X is simply connected.
(ii) If A is simply connected, then π1(X ,x0) = π1(X1,x0)∗π1(X2,x0).

(iii) If X2 is simply connected, then π1(X ,x0) = π1(X1,x0)/〈π1(A,x0)〉 where
〈π1(A,x0)〉 denotes the subgroup normally generated by π1(A,x0).

Corollary 2.3.3. For n > 1, the n-sphere Sn is simply connected.

Proof. We regard Sn as the unit sphere in R
n+1. Let X1 = Sn −{(0,0, . . . ,0,1)} and

X2 = Sn −{(0,0, . . . ,0,−1)}. Then X1 and X2 are both homeomorphic to D̊n, so are
path connected and simply connected, and X1 ∩X2 is path connected, as n > 1, so
by Corollary 2.3.2(i) Sn is simply connected. ��
Example 2.3.4. (i) Regard Sn as the unit sphere in R

n+1 and let Z2 act on Sn, where
the nontrivial element g of Z2 acts via the antipodal map, g(z1, . . . ,zn+1) =
(−z1, . . . ,−zn+1). The quotient RPn = Sn/Z2 is real projective n-space. Note
that p : S0 → RP0 is the map from the space of two points to the space of one
point, and p : S1 →RP1 may be identified with the cover in Example 2.2.3(iib)
for n = 2. But for n > 1, by Corollary 2.3.3 and Theorem 2.2.6 we see that
π1(RPn,x0) = Z2.

(ii) For n = 2m − 1 odd, regard Sn as the unit sphere in C
m. Fix a pos-

itive integer k and integers j1, . . . , jm relatively prime to k. Let the
group Zk act on Sn where a fixed generator g acts by g(z1, . . . ,zm) =
(exp(2π i j1/k)z1, . . . ,exp(2π i jm/k)zm). The quotient L = L2m−1(k; j1, . . . , jm)
is a lens space. For m = 1 the projection p : S2m−1 → L may be identified with
the cover in Example 2.2.3(iib) with (in the notation there) n= k. But for m> 1,
by Corollary 2.3.3 and Theorem 2.2.6 we see that π1(L,x0) = Zk. ♦

Example 2.3.5. Regard S1 as the unit circle in C. Let n be a positive integer. For
k = 1, . . . ,n let (S1)k be a copy of S1. The n-leafed rose is the space Rn obtained
from the disjoint union of (S1)1, . . . ,(S1)n by identifying the point 1 in each copy
of S1. ♦

Let r0 ∈ Rn be the common identification point. Let (S1)k be coordinated by (z)k,
and let ik : (S1)k → Rn be the inclusion.
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Corollary 2.3.6. The fundamental group π1(Rn,r0) is the free group on the n
elements αk = (ik)∗(gk), where gk is a generator of π1((S1)k,(1)k), for k = 1, . . . ,n.

Proof. We proceed by induction on n.
For n = 1 this is Example 2.2.7.
Now suppose that n ≥ 1 and that the theorem is true for n. Write Rn+1 = X1 ∪X2

where:

X1 =
n⋃

k=1

(S1)k ∪{(z)n+1 ∈ (S1)n+1 | Re (z)> 0},

X2 =
n⋃

k=1

{(z)k ∈ (S1)k | Re (z)> 0}∪ (S1)n+1,

Then X1 ∩X2 is contractible. (It has the point 1 as a strong deformation retract.)
Also, X1 has Rn as a strong deformation retract, and X2 has (S1)n+1 as a strong
deformation retract. By the induction hypothesis π1(Rn,r0) is the free group with
generators α1, . . . ,αn, and by the n = 1 case π1((S1)n+1,1) is the free group on
αn+1, so, by Corollary 2.3.2(ii), π1(Rn+1,r0) is the free group with generators
α1, . . . ,αn+1, so the theorem is true for n+ 1.

Thus by induction we are done.
Here is a picture for the case n = 3:

R3 X1 X2 X1 ∩ X2

��

2.4 Applications to Free Groups

We now show how to use the topological methods we have developed so far to easily
derive purely algebraic results about subgroups of free groups.

Definition 2.4.1. A 1-complex is an identification space C = (V,E)/∼ where V =
{vi} is a collection of points, the vertices of C, and E = {I j} is a collection of
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intervals, I = [0,1], the edges of C, with 0 ∈ E j identified with some vi and 1 ∈ E j

identified with some vi, with C having the quotient topology. C is a finite complex if
it has finitely many vertices and edges. ♦
Example 2.4.2. (i) The n-leafed rose Rn is a 1-complex with 1 vertex and n edges.
(ii) An n-gon, i.e., a polygon with n sides, n ≥ 3, may be naturally regarded as a

1-complex with n edges and n vertices. ♦
A subcomplex of C is a subset of C that is a complex, with vertices a subset of

V and edges a subset of E . A tree is a contractible 1-complex. A maximal tree in C
is a subcomplex of C that is a tree, and is maximal (under inclusion) among such
subcomplexes of C. It is easy to see that a maximal tree always exists, though it may
not be unique. Also, if C is connected, a maximal tree must contain all vertices.

Example 2.4.3. (i) An n-leafed rose has its single vertex as a maximal tree.
(ii) The subcomplex obtained by deleting any edge is a maximal tree in an

n-gon. ♦
Theorem 2.4.4. Let C be a connected 1-complex, v a vertex of C, and T a maximal
tree in C. Then π1(C,v) is a free group with generators in 1-1 correspondence with
the edges of C not in T . A generator is obtained from such an edge E as follows: Let
E have vertices vi0 and vi1 , respectively. Then the generator αE is represented by a
loop in E that consists of a path in T from v to vi0 , then E from vi0 to vi1 , then a path
in T from vi1 back to v.

Note that this theorem generalizes Corollary 2.3.6 in the case of a finite 1-
complex, and can be proved in a very similar fashion. It remains true for infinite
1-complexes as well.

Corollary 2.4.5. Let H be a subgroup of a free group G. Then H is a free group.

Proof. Consider a rose R whose edges are in 1-1 correspondence with the generators
of G. By Theorem 2.2.19, there is a cover R̃ with π1(R̃, ṽ) = H. But it is easy to see
that, since a covering projection p : R̃ → R is a local homeomorphism, R̃ is a 1-
complex as well. But then π1(R̃, ṽ) is free by Theorem 2.4.4. ��
Corollary 2.4.6. Let G be a free group on k elements and let H be a subgroup of G
of index n. Then H is a free group on (k− 1)n+ 1 elements.

Proof. We may consider G to be the fundamental group π1(R,v), where R is a k-
leafed rose. Then H is the fundamental group of an n-fold cover π1(R̃, ṽ). Now R
has 1 vertex and k edges, so R̃ has n vertices and kn edges. Then a maximal tree T
in R̃ has n− 1 edges so R̃ has kn− (n− 1) = (k− 1)n+ 1 edges not in T and the
corollary follows immediately from Theorem 2.4.4. ��

a b
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Example 2.4.7. We consider the free group 〈a,b〉 on two generators a and b, which
we regard as the fundamental group of R2:

(i) We find all subgroups of index 2. These are fundamental groups of 2-fold
covers. We give “pictures” of these covers, with each curve or loop on the left
(resp. right), traversed in the direction of the arrows, projecting to a (resp. b).
Note that we have two choices of basepoint, giving us two possible subgroups,
which will be conjugate. But every 2-fold cover is regular (or every subgroup
of index 2 is normal), so the choice of basepoint does not matter. We give the
covers and the corresponding subgroups. Note each is a free group on three
generators.

a,bab−1, b2 a2,ab,b2 a2,aba−1, b

(ii) Similarly we find all subgroups of index 3 by finding fundamental groups
of 3-fold covers. We give similar pictures. In case the cover is regular, the
corresponding subgroup is normal, and we have listed it once, and noted that
fact. In case it is not regular, we have listed the different conjugacy classes
corresponding to the choices of different basepoints, from top to bottom. Note
each is a free group on four generators.

a,bab−1, b2ab−1, b3

regular regular
a3,ab−1,a2b−1a−1,a2b

a3,ab,a2ba−1, b3

regular regular
a3,a2ba−1,aba−1, b3

♦
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b2ab−2,a2,ab2, b3

bab−1,a2,ab,b3

a,b−1a2b,b−1ab2, b3

a2ba−2, b2, ba2,a3

aba−1, b2, ba,a3

b,a−1b2a,a−1ba2,a3

a2,abab−1a−1,ab−1, b3

a2, bab−1,ab−1, b3

b−1a2b,a,b−1a−1b2, b3

b2, baba−1b−1, ba−1,a3

b2,aba−1, ba−1,a3

a−1b2a,b,a−1b−1a2,a3

a2,abab−1a−1, b,ab2a−1

a2, bab−1,a−1ba,b2

b−1a2b,a,b−1a−1bab,b2

b2, baba−1b−1,a,ba2b−1

b2,aba−1, b−1ab,a2

a−1b2a,a−1b−1aba,a2
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2.5 Free Homotopy Classes

The fundamental group π1(X ,x0) is, as a set, the set of homotopy classes of maps
(S1,1) → (X ,x0). These maps are based at x0. We now wish to study homotopy
classes of maps S1 → X , known as free homotopy classes.

Theorem 2.5.1. Let X be a path connected space. Then there is a 1-1 cor-
respondence between conjugacy classes of elements of π1(X ,x0) and π(X) =
{homotopy classes of maps S1 → X}.

Proof. Let Φ : π1(X ,x0)→ π(X) be the map given by “forgetting the basepoint”.

Claim: Φ is onto. Proof: Let f : S1 → X and let f (1) = x1. Choose a path from
x0 to x1 and let g be the loop at x0 obtained by following this path from x0 to x1,
then looping from x1 to itself via f , and then following this path back from x1 to x0.
A free homotopy between g and f is given by the following picture

f
x1x0

f
x1

f
x1

f
x1

t = 0 t = 1/3 t = 2/3 t = 1

Claim: If g1 and g0 are conjugate elements of π1(X ,x0), then f1 = Φ(g1) and
f0 = Φ(g0) are freely homotopic. Proof: Let g1 = hg0h−1 and let g1 be represented
by α : I → X , where I is parameterized by s, with α following h for 0 ≤ s ≤ 1/3,
α following g0 for 1/3 ≤ s ≤ 2/3, and α following h−1 for 2/3 ≤ s ≤ 1. Let A :
I × I → X by A(s, t) = α(s + t/3) where s+ t/3 is taken mod 1. Then A gives a
free homotopy between g1 and β : I → X with β following g0 for 0 ≤ s ≤ 1/3, β
following h−1 for 1/3 ≤ s ≤ 2/3, and β following h for 2/3 ≤ s ≤ 1. But this map
is obviously homotopic rel basepoint to g0.

Claim: If f1 = Φ(g1) and f0 = Φ(g0) are freely homotopic, then g1 and g0 are
conjugate elements of π1(X ,x0). Proof: Given a homotopy G between g1 and g0 we
have a map of the square into X :

g0

g1

hh

• •
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Then the left-hand side, the top, and the right-hand side give a loop that represents
hg1h−1. But this loop is homotopic rel basepoint to g0 by a homotopy that deforms
those three sides of the square to the bottom as shown:

t = 0 t = 1/3 t = 2/3 t = 1

(That is, at time t one traverses the heavy curve from the lower left up, over, and
down to the lower right as s goes from 0 to 1.) ��

2.6 Some “Bad” Spaces

Every mathematical theory is best equipped to handle some kinds of mathematical
objects, which it considers to be “good”, and less well equipped to handle others,
which it considers to be “bad”. Algebraic topology is no exception, and we will
concentrate our attention on good spaces. But in this section we give a couple of
examples of bad ones.

Example 2.6.1. Let X be the subspace of R2 consisting of the closed line segments
joining the points (1/n,0) to (0,1) for each positive integer n, and also the closed
line segment joining (0,0) to (0,1). Give X the topology it inherits as a subspace of
R

2. Then X is path connected but not locally path connected.
Let A be the subspace of X consisting of the closed line segment joining (0,0) to

(0,1). Then X and A are both contractible to the point (0,1) by a homotopy leaving
that point fixed. It then follows that A is a deformation retract of X . But A is not a
strong deformation retract of X . ♦
Example 2.6.2. Let H be the subset of R2 which consists of the union of circles
of radius 1/n centered at the point (1/n,0), n = 1,2,3, . . . . Give H the topology it
inherits as a subset of R2. H is commonly known as the Hawaiian earring.

Let K1 be the space which is the union of the closed line segments joining
the points of H to the point (0,0,1) in R

3 (where we regard R
2 ⊂ R

3 as usual),
topologized as a subset of R3. Note that K1 is homotopic to the cone on H as defined
in Definition 1.2.10. K1 is path connected and simply connected (as it is contractible)
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but is neither locally simply connected nor semilocally simply connected. Let K2

be the space obtained by reflecting K1 through the origin, and let K = K1 ∪ K2.
Then K1 ∩K2 = {(0,0,0)}, so K1 and K2 are both simply connected and K1 ∩K2 is
connected. If K1 and K2 were open subsets of K, we could apply van Kampen’s
theorem to conclude that K is simply connected. But it is not. For example, a
loop starting at (0,0,0) that alternately winds around infinitely many circles of
ever-decreasing radii on the “right” and “left” sides of the origin, and winds up
at the origin, is not null-homotopic. Indeed, this loop is not even freely homotopic
to a constant loop. Also, although K is not simply connected, it has no covering
space other than K itself, so in particular does not have a simply connected covering
space. ♦

2.7 Exercises

Exercise 2.7.1. Prove Lemma 2.1.2.

Exercise 2.7.2. Prove Lemma 2.1.3.

Exercise 2.7.3. Prove Theorem 2.1.5.

Exercise 2.7.4. Give an example of a map p : Y → X satisfying the conditions in
Lemma 2.2.2 which is not a covering projection.

Exercise 2.7.5. Verify that the maps in Example 2.2.3 are indeed covering projec-
tions.

Exercise 2.7.6. Let X be a simply connected space. Fix x0, x1, two arbitrary points
at X . Let f : I → X and g : I → X with f (0) = g(0) = x0 and f (1) = g(1) = x1. Show
that f and g are homotopic rel {0,1}.

Exercise 2.7.7. Prove directly the following special case of van Kampen’s theorem:
Let X be the union X = X1 ∪X2 of two open sets X1 and X2. Suppose that X1, X2,
and A = X1 ∩X2 are all path-connected. Suppose that each of X1 and X2 is simply
connected. Then X is simply connected.

Exercise 2.7.8. Prove parts (ii) and (iii) of Theorem 2.2.19.

Exercise 2.7.9. (a) Let C be a connected finite 1-complex. Show that the number
of edges n of C not in a maximal tree T is well-defined, i.e., independent of
choice of T .

(b) Show that C is homotopy equivalent to the n-leafed rose Rn for some n.

Exercise 2.7.10. Let p be a prime. Show that the free group 〈a,b〉 has exactly p+1
normal subgroups of index p.

Exercise 2.7.11. Find all 4-fold covers of the two-leafed rose, up to equivalence.
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Exercise 2.7.12. Let X be a path-connected space and let f : (X ,x0)→ (X ,x0) be
a map. The mapping torus Mf of f is the identification space X × I/∼ where (x,0)
is identified to ( f (x),1). Let m0 be the image of the point (x0,0) in Mf . Show that
π1(Mf ,m0) = π1(X ,x0)∗π1(S1)/tgt−1 = f∗(g), where t is the generator of π1(S1).

Exercise 2.7.13. Let G be a topological group (not necessarily abelian) with
identity element e. Let α ∈ π1(G,e) be represented by f : (I,{0,1})→ (G,e) and let
β ∈ π1(G,e) be represented by g : (I,{0,1})→ (G,e). Show that both αβ and β α
are represented by h : (I,{0,1})→ (G,e) given by h(t) = f (t)g(t). Note this implies
that π1(G,e) is abelian, and also that α−1 is represented by k : (I,{0,1})→ (G,e)
given by k(t) = ( f (t))−1.

complex coefficients. Let q(z) be the polynomial q(z) = zn. For a positive real
number r, let pr(z) = p(rz)/‖p(rz)‖ and similarly for qr(z). Show that, for r
sufficiently large, pr : S1 → S1 and qr : S1 → S1 are homotopic.

Exercise 2.7.15. Prove the Fundamental Theorem of Algebra: Every nonconstant
complex polynomial has a complex root.

Exercise 2.7.16. Prove the claims in Example 2.6.1.

Exercise 2.7.17. Prove the claims in Example 2.6.2.

Exercise 2.7.14. Let p(z) = anzn + · · ·+ a0 be a polynomial of degree n > 0 with



Chapter 3
Generalized Homology Theory

We begin by presenting the famous Eilenberg-Steenrod axioms for homology. We
then proceed by drawing (many) useful consequences from these axioms. At the end
of this chapter we introduce cohomology.

We defer showing that there exist a nontrivial homology theory satisfying these
axioms until later.

Throughout this chapter, unless otherwise stated, Hi(X) and Hi(X ,A) denote
generalized homology groups (as defined below), and all results are valid for
generalized homology, not just ordinary homology.

3.1 The Eilenberg-Steenrod Axioms

A pair of spaces (X ,A) is a topological space X and a subspace A. We identify the
space X with the pair (X , /0).

Here are the Eilenberg-Steenrod axioms.

Definition 3.1.1. A homology theory associates to each pair (X ,A) a sequence of
abelian groups {Hi(X ,A)}i∈Z and a sequence of homomorphisms {∂i : Hi(X ,A)→
Hi−1(A, /0)}i∈Z and to each map f : (X ,A)→ (Y,B) a sequence of homomorphisms
{ fi : Hi(X ,A) → Hi(Y,B)}i∈Z satisfying the following axioms, which hold for all
values of i. (We abbreviate Hi(X , /0) to Hi(X).)

Axiom 1. If f : (X ,A)→ (X ,A) is the identity map, then fi : Hi(X ,A)→ Hi(X ,A) is
the identity map.

Axiom 2. If f : (X ,A) → (Y,B) and g : (Y,B) → (Z,C), and h is the composition
h = g ◦ f , h : (X ,A)→ (Y,C), then hi = gi ◦ fi.

Axiom 3. If f : (X ,A)→ (Y,B) then the following diagram commutes, where f |A :
A → B is the restriction of f to A:

© Springer International Publishing Switzerland 2014
S.H. Weintraub, Fundamentals of Algebraic Topology, Graduate Texts
in Mathematics 270, DOI 10.1007/978-1-4939-1844-7__3
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Hi(X,A) Hi(Y,B)

Hi−1(B)Hi−1(A)

∂i

fi

∂i

(f |A)i−1

Axiom 4. The homology sequence (where the first two maps are induced by the
inclusions A ↪→ X and (X , /0) ↪→ (X ,A))

· · · −→ Hi(A)−→ Hi(X)−→ Hi(X ,A)
∂i−−→ Hi−1(A)−→

is exact.

Axiom 5. If f : (X ,A) → (Y,B) and g : (X ,A) → (Y,B) are homotopic, then fi :
Hi(X ,A)→ Hi(Y,B) and gi : Hi(X ,A)→ Hi(Y,B) are equal.

Axiom 6. If U ⊆ A with the closure of U contained in the interior of A, and f :
(X −U,A−U)→ (X ,A) is the inclusion, then

fi : Hi(X −U,A−U)−→ Hi(X ,A)

is an isomorphism.

Axiom 7. If X is a space consisting of a single point, then

Hi(X) = 0 for i �= 0. ♦
Axiom 6 is known as excision, and it is convenient to reformulate it so as to

obtain a definition.
A couple of subspaces (A,B) of a space X consists of two subspaces A and B of

X , with no inclusion relations assumed.

Definition 3.1.2. Let (X ,A) be a pair and let U be a subset of A. The inclusion (X −
U,A−U)→ (X ,A) is an excisive map if it induces an isomorphism on homology.

If A and B are subspaces of X , then (A,B) is an excisive couple if the inclusion
(A,A∩B)→ (A∪B,B) is an excisive map. ♦

With this definition, Axiom 6 states that if the closure of U is contained in the
interior of A, then the inclusion (X −U,A−U) → (X ,A) is an excisive map, or,
equivalently, that in this situation (X −U,A) is an excisive couple.

Axiom 7 is known as the dimension axiom, and the abelian group G = H0(∗) is
called the coefficient group of the homology theory.

Definition 3.1.3. A generalized homology theory is a theory satisfying Axioms 1
through 6. ♦
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When we wish to stress the difference between it and a generalized homology
theory, we will refer to a homology theory as an ordinary homology theory.

Our results in this chapter will apply to any generalized homology theory, so in
this chapter we let Hi(X) or Hi(X ,A) denote a generalized homology group.

We are being careful by denoting the induced maps on homology by fi : Hi(X)→
Hi(Y ), for example, but it is common practice to denote all these maps by f∗, so that
f∗ : Hi(X) → Hi(Y ), and we shall sometimes follow this practice. (Sometimes the
profusion of indices creates confusion rather than clarity.)

We now introduce, for later reference, a properly that a generalized homology
theory may have.

Definition 3.1.4. A generalized homology theory is compactly supported if for any
pair (X ,A) and any element α ∈ Hi(X ,A) there is a compact pair (X0,A0) ⊆ (X ,A)
with α = j∗(α0) for some element α ∈ Hi(X0,A0), where j : (X0,A0) → (X ,A) is
the inclusion. ♦

3.2 Consequences of the Axioms

We first list some consequences of the axioms. Again, i is allowed to be arbitrary.

Lemma 3.2.1. (i) Hi( /0) = 0.
(ii) Let f : (X ,A) → (Y,B) be a homotopy equivalence. Then fi : Hi(X ,A) →

Hi(Y,B) is an isomorphism.
(iii) Suppose that A is a retract of X. Let j : A → X be the inclusion and r : X → A

be a retraction. Then ji : Hi(A)→ Hi(X) is an injection and ri : Hi(X)→ Hi(A)
is a surjection. Furthermore,

Hi(X)∼= Hi(A)⊕Hi(X ,A)

and

Hi(X ,A)∼= Ker(ri).

(iv) Let X be a space and let X1 and X2 be unions of components of X. Let j1 : X1 →
X and j2 : X2 → X be the inclusions. Then j1

i + j2
i : Hi(X1)⊕Hi(X2)→ Hi(X)

is an isomorphism.

Lemma 3.2.1(ii) has the following useful generalization

Theorem 3.2.2. Let f : (X ,A)→ (Y,B) be a map of pairs and suppose that both f :
X → Y and f |A : A → B are homotopy equivalences. Then fi : Hi(X ,A)→ Hi(Y,B)
is an isomorphism for all i.

Proof. We have the commutative diagram of exact sequences:
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Hi(X,A)

Hi(Y,B) Hi−1(B)

Hi−1(X)

Hi−1(Y )

Hi−1(A)

Hi(Y)

Hi(X)Hi(A)

Hi(B)

The first, second, fourth, and fifth vertical arrows are isomorphisms. Hence, by
Lemma A.1.8, so is the third. ��

It is convenient to formulate the following:

Definition 3.2.3. Let X be a nonempty space. Let f : X → ∗ (the space consisting
of a single point). The reduced homology group

H̃i(X) = Ker( fi : Hi(X)−→ Hi(∗)). ♦
Theorem 3.2.4. Let X be a nonempty space and let x0 be an arbitrary point of X.
Then for each i,

(i) H̃i(X)∼= Hi(X ,x0),
(ii) Hi(X)∼= Hi(x0)⊕ H̃i(X).

Proof. As x0 is a retract of X , this is a special case of Lemma 3.2.1. ��
Lemma 3.2.5. Let f : X → Y be a map. Then f induces well-defined maps f̃i :
H̃i(X)→ H̃i(Y ) for every i, where f̃i = fi|H̃i(X).

Proof. This follows immediately from the commutativity of the diagram

X
f

Y

∗

��
Remark 3.2.6. Note that f : X → Y does not induce fi : (X ,x0) → (Y,y0) unless
y0 = f (x0), so we must be careful with the isomorphisms in Theorem 3.2.4. If X and
Y are both path connected the situation is not so bad. For if Z is a path-connected
space and z0 and z1 are any two points in Z, the maps j0 : {x} → {z0} ⊆ Z and
j1 : {∗} → {z1} ⊆ Z are homotopic, so the maps of these on homology agree, i.e.,
Hi(z0) and Hi(z1) are the same subgroup of Hi(Z). But if Z is not path connected,
this need not be the case (see Remark 4.1.2). ♦

We recall that if the closure of U is contained in the interior of A, then the
inclusion (X −U,A−U) → (X ,A) is excisive. It is easy to see that this cannot
be weakened to the closure of U contained in A, and we give examples in
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Example 4.1.11. It also cannot be weakened to U contained in the interior of A.
Examples are harder to construct, but we give two in Example 5.2.8.

In practice, we often are in the situation where A is a closed set and we wish to
excise the interior of A, i.e., we wish to have the inclusion (X − int(A),∂A)→ (X ,A)
be excisive. This is true if ∂A sits “nicely” in X . To be precise, we have the following
very useful result.

Theorem 3.2.7. (1) Let A be a nonempty closed subset of X. Suppose that ∂A has
an open neighborhood C in A such that the inclusions (X −A)∪C →X − int(A)
and ∂A →C are both homotopy equivalences. Then (X − int(A),∂A)→ (X ,A)
is excisive.

(2) Let A be a nonempty closed subset of X. Suppose that ∂A has an open
neighborhood C in X − int(A) such that the inclusions A →C∪A and ∂A →C
are both homotopy equivalences. Then (X − int(A),∂A)→ (X ,A) is excisive.

Proof. (1) Let V = A−C. Then V is a closed set in the interior of A, so (X −V,A−
V )→ (X ,A) is excisive. But X −V = (X −A)∪C and A−V =C. By hypothesis
the first of these is homotopy equivalent to X − int(A) and the second of these
is homotopy equivalent to ∂A, so by Theorem 3.2.2

(
X − int(A),∂A

)→ (X ,A)
is excisive.

(2) Note that int(A) is a set whose closure A is contained in the interior of C∪A.
Thus (X − int(A),(C ∪A)− int(A)) → (X ,C ∪A). But (C ∪A)− int(A) = C.
By hypothesis C is homotopy equivalent to ∂A and C ∪A to A, so again by
Theorem 3.2.2 (X − int(A),∂A)→ (X ,A) is excisive. ��

Remark 3.2.8. It is easiest to visualize this theorem by considering the following
pictures, where in (1) C is a “collar” of ∂A inside A, and in (2) C is a “collar” of A
outside A.

∂A
∂A

C
C

A
A

X X

(1) (2)

The way these situations most often arise is when when ∂A is a strong
deformation retract of C. Note that in (2), when C is outside A, this is equivalent
to W = C∪A being an open neighborhood of A having A as a strong deformation
retract. ♦

This theorem allows us to give two interpretations of relative homology.
Recall we defined cA, the cone on A, in Definition 1.2.10. The identification

space X ∪A cA is the quotient space of the disjoint union of X and cA under the
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identification of a ∈ A ⊆ X with (a,0) ∈ cA. We let ∗ denote the “cone point”, i.e.,
the point to which A×{1} is identified. Also, in the second half of the theorem,
X/A is the quotient space of X obtained by identifying A to a point, and we let ∗
denote the point A/A.

Theorem 3.2.9. (1) Let A be a nonempty subset of X. Then for each i, Hi(X ,A) is
isomorphic to the reduced homology group H̃i(X ∪ cA).

(2) Let A be a nonempty closed subset of X and suppose that A is a strong
deformation retract of some neighborhood W of A. Thus for each i, Hi(X ,A)
is isomorphic to the reduced homology group H̃i(X/A).

Proof. (1) We follow the idea of the proof of Theorem 3.2.7. Let V = {(a,s) | s ≥
1
2} so that V is a closed subset of X ∪A cA which is contained in the interior of
cA. Then the inclusion ((X ∪A cA)−V,cA−V )→ (X ∪A cA,cA) is excisive. But
there is a strong deformation retraction of the pair ((X ∪A cA)−V,cA−V) to
(X ,A), and a strong deformation retraction of cA to the point ∗, so we have an
isomorphism on homology, for every i, from Hi(X ,A) to Hi(X ∪A cA,∗). But the
latter group is isomorphic to H̃i(X ∪A cA).

(2) We have the following chain of isomorphisms, for each i:

Hi(X ,A)∼= Hi(X ,W )

∼= Hi(X −A,W −A)

∼= Hi(X/A−A/A,W/A−A/A)

∼= Hi(X/A,W/A)

∼= Hi(X/A,A/A) = Hi(X/A,∗)∼= H̃i(X/A).

The first isomorphism is because the inclusion A → W is a homotopy equiva-
lence. The second isomorphism is ordinary excision (A is a closed subset of the
open set W ). The third isomorphism is because there is a homeomorphism of pairs,
i.e., X −A is homeomorphic to X/A−A/A, this homeomorphism restricting to a
homeomorphism of W −A to W/A−A/A. The fourth isomorphism is again ordinary
excision, this time in the space X/A, as ∗=A/A is closed and is in the open set W/A.
By hypothesis, there is a strong deformation retraction from W into A in X , and this
descends to give a strong deformation retraction from W/A to A/A in X/A, yielding
the fifth isomorphism. ��

It is the excision property that enables us to actually compute homology groups.
One of the most common ways it enters is the Mayer-Vietoris sequence.

Theorem 3.2.10 (Mayer-Vietoris). Let X = X1 ∪X2, A = X1 ∩X2, and suppose
that the inclusion (X1,A)→ (X ,X2) is excisive. Then there is a long exact sequence
in homology

· · · −→ Hi(A)
α−−→ Hi(X1)⊕Hi(X2)

β−−→ Hi(X)
�−−→ Hi−1(A)−→ ·· · .
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Proof. We have the long exact homology sequences

α2

α1

β1

γ1
Hi(X 1 ,A)

ε

∂1

α2

β2 γ2 ∂2

Hi(A)

Hi(X) Hi(X,X2)Hi(X2)

Hi(X1)

Hi−1(X2)

Hi−1(A)

where by assumption ε : Hi(X1,A) → Hi(X ,X2) is an isomorphism. Then the
theorem follows by applying Theorem A.2.11. ��

A triad of spaces is a triple (X ,A,B) with A and B each subspaces of X . In this
situation we also have the following Mayer-Vietoris sequence.

Theorem 3.2.11. Let (X ,A,B) be a triad and suppose that the inclusion (A,A∩
B)→ (A∪B,B) is excisive. Then there is an exact homology sequence

· · · −→ Hi(X ,A∩B)−→ Hi(X ,A)⊕Hi(X ,B)−→ Hi(X ,A∪B)

−→ Hi−1(X ,A∩B)−→ ·· · .

Proof. Exactly the same as the proof of Theorem 3.2.10. ��
Here is a construction that we will be using later.

Definition 3.2.12. Let X be a space. The suspension ΣX of X is the quotient space
of X × [−1,1] under an identification of X ×{1} to a point c+ and X ×{−1} to a
different point c−. ♦

Note that the subspaces c+X = {(x,s) ∈ ΣX | s � 0} and c−X = {(x,s) ∈ ΣX |
s � 0} are each homeomorphic to cX , the cone on X .

Also observe that any f : X → Y determines a map Σ f : ΣX → ΣY defined by
Σ f (x,s) = ( f (x),s), x ∈ X , s ∈ [−1,1].

Theorem 3.2.13. (1) For any space X there is an isomorphism, for any i,

Σ : H̃i+1(ΣX)−→ H̃i(X).

(2) For any f : X → Y the following diagram commutes:

˜

(Σf)i+1

Σ

fi

˜ Σ

Hi+1(ΣX)

Hi+1(ΣY ) H̃i(Y ).

H̃i(X )
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Proof. We prove (1). We have the exact homology sequence of the pair (c+X ,X):

· · · −→ Hi+1(c+X ,X)−→ Hi(X)−→ Hi(c+X)−→ ·· ·

Now c+X is contractible to the cone point c+, and furthermore there is a path in
c+X from c+ to any point x0 of X . This implies that the inclusion of x0 into X gives
a splitting of the map Hi(X) → Hi(c+X), so this map is a surjection and the exact
homology sequence breaks up into a sequence of (split) short exact sequences

0 −→ Hi+1(c+X ,X)−→ Hi(X)−→ Hi(∗)−→ 0

and so Hi+1(c+X ,X) is the kernel of the map Hi(X)→ Hi(∗), which by definition is
H̃i(X). But then by Theorem 3.2.9(2) Hi+1(c+X ,X)=Hi+1(c+X/X ,X/X). But this
pair is homeomorphic to (ΣX ,c−) (under the homeomorphism (x,s)→ (x,2s−1)).
Thus Hi+1(c+X ,X)∼=Hi+1(ΣX ,c−)∼= H̃i+1(ΣX) by Theorem 3.2.4. ��

The exact homology sequence of a pair has a generalization to a triple.

Theorem 3.2.14. Let A and B be subspaces of X with B ⊆ A. Then there is an exact
homology sequence

· · · −→ Hi(A,B)−→ Hi(X ,B)−→ Hi(X ,A)
∂−→ Hi−1(A,B)−→ ·· · .

Proof. We merely remark here that the boundary map in the sequence is the
composition

Hi(X ,A)−→ Hi−1(A)−→ Hi−1(A,B).

Otherwise, the result follows directly from Theorem A.2.12. ��
Once we have the exact sequence of a triple, the proof of the Mayer-Vietoris

sequence goes through unchanged to give the following result.

Theorem 3.2.15. Let X = X1 ∪ X2, A = X1 ∩ X2, and suppose that the inclusion
(X1,A)→ (X ,X2) is excisive. Let B be an arbitrary subspace of A. Then there is a
long exact sequence in homology

· · · → Hi(A,B)→ Hi(X1,B)⊕Hi(X2,B)→ Hi(X ,B)→ Hi−1(A,B)→ ··· .

3.3 Axioms for Cohomology and Their Consequences

We now present the Eilenberg-Steenrod axioms for cohomology theory, and develop
the theory axiomatically. The development closely parallels that of homology theory
“with all the arrows reversed,” so we shall be brief.
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Definition 3.3.1. A cohomology theory associates to each pair (X ,A) a sequence
of abelian groups {Hi(X ,A)}i∈Z and a sequence of group homomorphisms

{
δ i :

Hi(A, /0) → Hi+1(X ,A)
}

i∈Z and to each map f : (X ,A) → (Y,B) a sequence of
homomorphisms

{
f i : Hi(Y,B) → Hi(X ,A)

}

i∈Z satisfying the following axioms,
which hold for all values of i. (We abbreviate Hi(X , /0) to Hi(X).)

Axiom 1. If f : (X ,A)→ (X ,A) is the identity map, then f i : Hi(X ,A)→ Hi(X ,A)
is the identity map.

Axiom 2. If f : (X ,A) → (X ,B) and g : (Y,B) → (Z,C) and h is the composition
h = g ◦ f , h : (X ,A)→ (Y,C), then hi = f i ◦ gi.

Axiom 3. If f : (X ,A)→ (Y,B) then the following diagram commutes, where f |A :
A → B is the restriction of f to A:

δi−1 δi−1

(f|A)i−1

fi

Hi(X,A) Hi(X,B)

Hi−1(A) Hi−1(B).

Axiom 4. The cohomology sequence

· · · ←− Hi(A)←− Hi(X)←− Hi(X ,A)←− Hi−1(A)←− ·· ·

is exact.

Axiom 5. If f : (X ,A) → (Y,B) and g : (X ,A) → (Y,B) are homotopic, then f i :
Hi(Y,B)→ Hi(X ,A) and gi : Hi(Y,B)→ Hi(X ,A) are equal.

Axiom 6. If U ⊆ A with the closure of U contained in the interior of A, and f :
(X −U,A−U)→ (X ,A) is the inclusion, then

f i : Hi(X ,A)−→ Hi(X −U,A−U)

is an isomorphism.

Axiom 7. If X is a space consisting of a single point, then

Hi(X) = 0 for i �= 0. ♦
We invite the reader to revisit the previous section and derive the analogs in

cohomology for the results stated there for homology. We shall merely state here a
few salient points.
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Definition 3.3.2. Let X be a nonempty space. Let f : X → ∗ (the space consisting
of a single point). The reduced cohomology group

H̃i(X) = Coker
(

f i : Hi(∗)−→ Hi(X)
)
. ♦

Remark 3.3.3. Note that H̃i(X) is a subgroup of Hi(X) while H̃i(X) is a quotient of
Hi(X). ♦

We have the Mayer-Vietoris sequence in cohomology.

Theorem 3.3.4. Let X = X1 ∪ X2, A = X1 ∩ X2, and suppose that the inclusion
(X1,A)→ (X ,X2) is excisive. Then there is a long exact sequence in cohomology

· · · ←− Hi(A)←− Hi(X1)⊕Hi(X2)←− Hi(X)←− Hi−1(A)←− ·· · .

3.4 Exercises

Exercise 3.4.1. Prove Lemma 3.2.1.

Exercise 3.4.2. Show that Axiom 6 (excision) is equivalent to: If A and B are
subspaces of X with X = int(A)∪ int(B), and g : (A,A∩B)→ (X ,B) is the inclusion,
then

gi : Hi(A,A∩B)−→ Hi(X ,B)

is an isomorphism for each i.
In other words, the following two conditions are equivalent:

(a) (X −U,A) is an excisive couple whenever closure(U)⊆ interior(A).
(b) (A,B) is an excisive couple whenever X = int(A)∪ int(B).

Exercise 3.4.3. Prove the observations in Remark 3.2.8:

(1) If ∂A has an open neighborhood C in A with ∂A a strong deformation retract
of C, then the hypotheses of Theorem 3.2.7(1) are satisfied.

(2a) If ∂A has an open neighborhood C in X − int(A) with ∂A a strong deformation
retract of C, then the hypotheses of Theorem 3.2.7(2) are satisfied.

(2b) The hypothesis of (2a) is satisfied if and only if W = C ∪ A is an open
neighborhood of A having A as a strong deformation retract.

Exercise 3.4.4. Prove Theorem 3.2.13(2).

Exercise 3.4.5. Prove that for any i and n, H̃i(Sn) is isomorphic to Hi−n(∗).
Exercise 3.4.6. Let A be a path-connected subspace of the path connected space X .
Show there is a long exact homology sequence

· · · −→ H̃i(A)−→ H̃i(X)−→ Hi(X ,A)−→ H̃i−1(A)−→ H̃i−1(X)−→ ·· · .
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Exercise 3.4.7. Let X be a nonempty space and let f : X → Y be a map. The
mapping cone Cf of f is the quotient space X × I∪Y/∼ where X ×{0} is identified
to a single point and (x,1) is identified to f (x), for each x ∈ X . Show there is a long
exact homology sequence

· · ·Hi(X)−→ Hi(Y )−→ Hi(Cf )−→ Hi−1(X)−→ Hi−1(Y )−→ ·· · .

Exercise 3.4.8. Let X be a space and x0 a point of X . The reduced suspension Σ0X
of X (at x0) is the quotient space of ΣX under the further relation that (x0, t) is
identified with (x0,0) for every t ∈ [−1,1]. Show that the quotient map q : ΣX →
Σ0X induces isomorphisms qi : Hi(ΣX)→ Hi(Σ0X) for every i.

Exercise 3.4.9. Formulate and prove the analog of Lemma 3.2.1 for cohomology.

Exercise 3.4.10. Show that the proofs of Theorems 3.2.7 and 3.2.9 go through
unchanged to yield analogous results for cohomology.

Exercise 3.4.11. Formulate and prove the analog of Theorem 3.2.13 for
cohomology.



Chapter 4
Ordinary Homology Theory

In this chapter we continue to proceed axiomatically. We assume now that we have
an ordinary homology theory, i.e., one that satisfies the dimension axiom, and we
assume in addition that the coefficient group is the integers Z. Throughout this
chapter Hn(X), or Hn(X ,A), will denote such a homology group.

There is one thing we need to be precise about. We have that H0(∗) ∼= Z, where
∗ is the space consisting of a single point. We now choose, once and for all, a
space ∗ consisting of a single point and an isomorphism of H0(∗) with Z. Given
this isomorphism we identify H0(∗) with Z. We use the notation 1∗ to denote the
generator of H0(∗) that we identify with the generator 1 ∈ Z. In addition, if p is any
other space consisting of a single point, we have a unique map f : ∗ → p including
an isomorphism f0 : H0(∗)→ H0(p), and we let 1p = f0(1∗).

4.1 Homology Groups of Spheres, and Some Classical
Applications

In this section we compute homology groups of spheres, and related matters. Given
our previous work, the computation is easy, but we will have to be careful. We then
use our results to easily derive some classical, and important, applications.

For ease of notation we set g = 1∗ ∈ H0(∗).
Let X = S0 = {−1,1}. Then the map j : ∗ → −1 induces a map j0 : H0(∗) →

H0(S0) and we set q = j0(g). Also, the map k : ∗ → 1 induces a map k0 : H0(∗)→
H0(S0) and we set p = k0(g). We let r : S0 → ∗ be the unique map.

Lemma 4.1.1. 1. H0(S0)∼=Z⊕Z. More precisely, H0(S0) = {mp+nq | m,n ∈ Z}.
2. H̃0(S0)∼= Z. More precisely, H̃0(S0) = {n(q− p) | n ∈ Z}.
3. H̃i(S0) = Hi(S0) = 0 for i �= 0.
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Proof. (1) Since {−1} and {1} are distinct components of S0, we have by
Lemma 3.2.1 that Hi(S0) ∼= Hi({−1})⊕ Hi({1}). Since {−1} and {1} are both
spaces consisting of a single point, the maps j and k are isomorphisms on homology.
Now Hi(∗)= 0 for i �= 0, so Hi(S0)= 0 for i �= 0, and as H̃i(S0) is subgroup of Hi(S0),
H̃i(S0) = 0 for i �= 0 as well.

More interestingly, j0 : H0({∗})→ H0({−1}) and k0 : H0({∗})→ H0({1}) are
isomorphisms, so H0({−1}) ∼= Z is generated by q and H0({1})∼= Z is generated
by p.

Also, H̃0(S0) = Ker(r0 : H0(S0) → H0({∗})). Now the composition {∗} →
{−1}→{∗} is the identity map so r0(q)= g and the composition {∗}→{1}→{∗}
is also the identity map so r0(p) = g as well.

Thus Ker(r0) is generated by q− p. ��
Remark 4.1.2. Note that we have the excision isomorphism induced by the inclu-
sion ({1}, /0) → (S0,{−1}) and via this isomorphism we obtain H0(S0,{−1}) ∼=
Z is the subgroup generated by p. Similarly, ({−1}, /0) → (S0,{1}) is excisive,
giving the subgroup H0(S0,{1}) ∼= Z generated by q. Also, we have seen that
H̃0(S0) ∼= Z, generated by q− p. Thus these three subgroups, while isomorphic,
are not identical. ♦
Lemma 4.1.3. Fix a positive integer n.

1. Hn(Sn)∼= Z and H0(Sn)∼= Z.
2. H̃n(Sn)∼= Z.
3. Hi(Sn) = 0 for i �= 0,n and H̃i(Sn) = 0 for i �= n.

Proof. Observe that for any k, ΣSk is homeomorphic to Sk+1. Then, if Σ i denotes Σ
applied i times, Σ iSk is homeomorphic to Sk+i. In particular ΣnS0 is homeomorphic
to Sn. Then, by repeated applications of Theorem 3.2.13 (or, more properly, by
induction) and by Lemma 4.1.1, H̃i(Sn) ∼= Z for i = n and 0 otherwise. The rest
of the lemma follows easily. ��
Corollary 4.1.4. Fix a positive integer n. Then Hi(Dn,Sn−1) ∼= Z for i = n and 0
for i �= n.

Lemma 4.1.5. For any n � 1, there does not exist a retraction from Dn onto Sn−1.

Proof. If there were such a retraction r : Dn → Sn−1, then r would induce a surjection
ri : Hi(Dn)→ Hi(Sn−1) for each i, by Lemma 3.2.1(iii).

But for i = n− 1, Hn−1(Dn) = 0 and Hn−1(Sn−1) = Z, so this is impossible. ��
Theorem 4.1.6 (Brouwer fixed-point theorem). Let f : Dn → Dn be an arbitrary
map. Then f has a fixed point, i.e. there is an x0 ∈ D with f (x0) = x0.

Proof. Suppose that f does not have a fixed point. Let r : Dn → Sn−1 be the map
defined as follows:

For x ∈ Dn, take the line segment from f (x) to x and prolong it until it intersects
Sn−1 at some point x′. Then set r(x) = x′. The map r is a retraction from Dn onto
Sn−1. But no such map can exist, by Lemma 4.1.5. ��
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Theorem 4.1.7 (Invariance of domain). Let U be a nonempty open set in R
n and

V be a nonempty open set in R
m and suppose there is a homeomorphism f : U →V.

Then m = n.

Proof. This is trivially true if m = 0 or n = 0, so we assume m � 1 and n � 1.
Although from a logical standpoint it is not necessary to begin with this special

case, the basic idea of the proof comes through most clearly if we first consider
the case U = R

m, V = R
n. Thus suppose we have a homeomorphism f : Rm → R

n.
Let y ∈ R

n be arbitrary and let x = f−1(y). Then we have a homeomorphism of
pairs f : (Rm,Rm −{x})→ (Rn,Rn −{y}) which then induces an isomorphism on
homology fi : Hi(R

m,Rm −{x}) → Hi(R
n,Rn −{y}) for each i. But, for k � 1,

Hi(R
k,Rk −{x}) = 0 for i �= k− 1 and = Z for i = k− 1, so we must have m− 1 =

n− 1 and hence m = n.
Now we prove the general case.
Choose a point y ∈V and let x = f−1(y). For some ε > 0, V contains a ball N of

radius ε around y. Let M = f−1(N), so F : M → N is a homeomorphism. Now for
some δ > 0, M contains a ball B of radius δ around x. Let C = f (B), so that f : B→C
is a homeomorphism. Then f : (B,B−x)→ (C,C−y) is a homeomorphism of pairs.
On the one hand, Hi(B,B− x)∼= Hi(R

m,Rm − x) for every i. On the other hand, the
closure of N −C is contained in the interior of C− y, so by excision Hi(C,C− y) is
isomorphic to Hi(N,N − y) ∼= Hi(R

n,Rn − y) for every i, so as in the special case,
m = n and we are done. ��
Definition 4.1.8. Let f : Sn → Sn be a map. Then f induces fn : Hn(Sn)→ Hn(Sn).
Since Hn(Sn)∼=Z, fn is multiplication by some integer d. This integer d is the degree
of the map. ♦

We shall need the following result when we investigate real projective spaces.

Lemma 4.1.9. Let a : Sn → Sn be the antipodal map, i.e., a(x1, . . . ,xn+1) =
(−x1, . . . ,−xn+1). Then the degree of a is (−1)n+1.

Proof. We divide the proof into two cases.

Case 1 (n is odd, n = 2m− 1). Then we may regard Sn as the unit sphere in C
m,

and a : Sn → Sn is a(z1, . . . ,zm) = (−z1, . . . ,−zm). But there is a homotopy between
the identity map on Sn and a given by ft(z1, . . . ,zm) = eπ it(z1, . . . ,zm) so a induces
the identity map on (reduced) homology.

Case 2 (n is even). First consider the case n = 0. Then a is the map which
interchanges the points −1 and 1 of S0. Hence the induced map on H0(S0) takes
q to p and p to q. In particular it takes the class q− p to the class p− q, so by
Lemma 4.1.1 it is multiplication by −1 on H̃0(S0).

Now let n = 2m > 0. Then we may regard Sn as the unit sphere in R×C
m,

and a : Sn → Sn by a(x,z1, . . . ,zm) = (−x,−z1, . . . ,−zm). Let a′ : Sn → Sn by
a′(x,z1, . . . ,zm) = (−x,z1, . . . ,zm). Then there is a homotopy between a′ and a given
by ft (x,z1, . . . ,zm) =

(− x,eπ it(z1, . . . ,zm)
)
. But a′ is just Σnα , where α is the

antipodal map on S0, so deg(a) = deg(a′) = deg(α) =−1 by the n = 0 case. ��
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Remark 4.1.10. We have many homology groups isomorphic to Z. Since Z has two
generators, there are choices of isomorphisms to be made, i.e, choices of generators.
We now observe that we can make these choices consistently. We shall call the
generators we choose the standard generators. We proceed inductively.

We choose the generator σ̃0 = q− p of H̃0(S0), in the notation of Lemma 4.1.1.
Now suppose that, for n � 1, we have chosen σ̃n−1, a generator of H̃n−1(Sn−1).

We have ∂ : Hn(Dn,Sn−1) → H̃n−1(Sn−1) an isomorphism, and we let δn =
∂−1(σ̃n−1). We have a homeomorphism of pairs f : (Dn∗,S

n−1
0 ) → (Dn,Sn−1) by

f
(
t1, . . . , tn,

√

1− (t2
1 + · · ·+ t2

n)
)
=(t1, . . . , tn) and we let δ+

n = ( f∗)−1(δn). We have
maps

Sn −→ (Sn,Dn
−)←− (Dn

+,S
n−1
0 )

inducing isomorphisms on homology

Hn(S
n)−→ Hn(S

n,Dn
−)←− Hn(D

n
+,S

n−1
0 ),

the right-hand map being an isomorphism by excision, and we let σn be the class in
Hn(Sn) whose image is δ+

n . Finally, for n � 1, H̃n(Sn)→ Hn(Sn) is an isomorphism
on homology and we let σ̃n be the inverse image of σn. ♦

We now give a pair of examples to show that the condition closure(U) ⊆
interior(A) for (X − U,A −U) → (X ,A) to be excisive cannot in general be
weakened to closure(u)⊆ A.

Example 4.1.11. (a) Let X = [0,1] and A = {1}. Let U = {1}, a closed set.
Then U ⊆ A but the closure of U (i.e., U itself) is not contained in the interior

of A. Now (X −U,A−U) = ([0,1), /0) and [0,1) is homotopy equivalent to a
point, so in particular H0(X −U,A−U) = Z. On the other hand, the inclusion
A → X is a homotopy equivalence so it induces an isomorphism on homology
groups, and so in particular H0(X ,A) = 0. Thus (X −U,A−U)→ (X ,A) is not
excisive.

(b) Here is a more interesting example along the same lines.
Fix n � 1 and let X = Sn. Let ∗ denote an arbitrary point of Sn and let U =

A = {∗}.
As we have seen, Hn(Sn) = Z, which readily implies Hn(Sn,∗) = Z. But

Hn(Sn −∗,∗−∗) = Hn(Sn −∗) = 0 as Sn −∗ is contractible.
♦

4.2 CW-Complexes and Cellular Homology

In this section we introduce a class of spaces, CW-complexes, that are particularly
amenable to the methods of algebraic topology, as well as a kind of homology
theory, cellular homology, that is particularly useful in studying them.
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Definition 4.2.1. A space X is obtained from a subspace A by adjoining an n-cell
if there is a map f : Sn−1 → A, called the characteristic map or attaching map of the
n-cell, with X the identification space X = A∪Dn/ ∼ where ∼ is the identification
p ∈ Sn−1 ∼ f (p) ∈ A, with the quotient topology. ♦
Remark 4.2.2. Observe that the obvious map Dn →X restricts to a homeomorphism
from int(Dn) onto its image in X . ♦
Remark 4.2.3. Observe that if n = 0, then X is just the disjoint union of A and an
isolated point. ♦
Definition 4.2.4. A CW-structure on a space X is a union of subspaces

/0 = X−1 ⊆ X0 ⊆ X1 ⊆ X2 ⊆ ·· · ⊆ X

such that, for each n, Xn is obtained from Xn−1 by adjoining n-cells, i.e., for some
indexing set Λn, and for each λ ∈ Λn, there are maps fλ : Sn−1

λ → Xn−1 with

Xn = Xn−1 ∪
⋃

λ∈Λn

Dn
λ/∼

where ∼ is the identification p ∈ Sn−1
λ ∼ f (p) ∈ Xn−1, with Xn having the quotient

topology, and furthermore

1. X =
⋃∞

n=0 Xn.
2. X has the weak topology with respect to {Xn}, i.e., A ⊆ X is closed if A∩Xn is

closed in Xn for every n.

A space X with a CW-structure is called a CW-complex. If X is a CW-complex
and A is a subcomplex, the (X ,A) is a CW-pair. ♦
Definition 4.2.5. The image of int(Dn

λ ) in X is a cell, or, more precisely, an n-
cell. ♦
Remark 4.2.6. Observe that for λ ∈ Λn the inclusion of int(Dn

λ ) into X is a
homeomorphism onto its image. Also observe that if λ ,μ ∈ Λn, λ �= μ , then the
image of int(Dn) and int(Dn

μ) under these inclusions are disjoint.
Also, as a set, X is the disjoint union of its cells. ♦

Lemma 4.2.7. A CW-complex X has the following properties:

1. (Closure-finiteness) The closure of each cell in X intersects only finitely many
other cells in X.

2. (Weak topology) A subset A of X is closed if and only if the intersection of A with
the closure of every cell in X is closed in X.

Proof. (1) The closure of each cell is f (Dn
λ ), the image of a compact set, and hence

compact, and if (1) were false this set would have an infinite subset (one point from
each other cell) without an accumulation point, which is impossible. ��
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Definition 4.2.8. If X = Xn but X �= Xn−1 then X is n-dimensional. If X has only
finitely many cells, then X is a finite complex. ♦
Example 4.2.9. 1. A discrete set of points is a 0-dimensional CW-complex.
2. A 1-complex as defined in Definition 2.4.1 is a 1-dimensional CW-complex.
3. For n � 1, Sn has the structure of a CW-complex with one cell in dimension 0

and one cell in dimension n.
4. Consider the inclusions S0 ⊂ S1 ⊂ S2 ⊂ ·· · where Sn−1 is the “equator” in Sn,

separating Sn into two “hemispheres”. This gives Sn the structure of a CW-
complex with two cells in each dimension from 0 to n.

5. For n � 2, begin with the CW-structure on Sn−1, the equator, with one cell in
dimension 0 and one cell in dimension n− 1, and obtain Sn by attaching two
n-cells, the northern and southern hemispheres. ♦

Lemma 4.2.10. Let X be obtained from A by adjoining an n-cell. Then

Hi(X ,A) =

{
Z i = n

0 i �= n.

Proof. Let C = {x ∈ Dn | |x|� 1/2}. Then C is a “collar” of A as in Remark 3.2.8,
i.e., A is a strong deformation retract of A ∪C. Thus Hi(X ,A) ∼= Hi(Dn,C) ∼=
Hi(Dn,Sn−1). ��
Lemma 4.2.11. 1. Hi(Xn,Xn−1) = 0 for i �= n.
2. For each λ ∈ Λn, fλ : (Dn

λ ,S
n−1
λ ) → (Xn,Xn−1) induces monomorphisms on

homology, and furthermore

Hn(X
n,Xn−1) =

⊕

λ∈Λn

( fλ )∗
(
Hn(D

n
λ ,S

n−1
λ )

)
.

3. Hi(Xn) = 0 for i > n.
4. The inclusion Xn−1 → Xn induces maps Hi(Xn−1) → Hi(Xn) that are isomor-

phisms except possibly for i = n− 1,n.
5. There is an exact sequence

0 −→ Hn(X
n)−→ Hn(X

n,Xn−1)−→ Hn−1(X
n−1)−→ Hn−1(X

n)−→ 0.

Proof. This is just an elaboration of Lemma 4.2.10.
Let (Dn( 1

2 ),S
n−1( 1

2 )) be the pair consisting of the disk of radius 1
2 and its

boundary. Then the inclusions induce isomorphisms on homology

H∗
(

Dn
(1

2

)
,Sn−1

(1
2

))

−→ H∗
(

Dn,Dn −Dn
(1

2

))

−→ H∗(Dn,Sn−1).
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Let X ′ = Xn−1 ∪ ⋃
λ fλ (Dn −Dn( 1

2 )) ⊆ Xn. Note that Xn−1 is closed and
contained in the interior of X ′, and that Xn−1 is a strong deformation retract of X ′.

Then we have a string of isomorphisms

⊕

λ
H∗(Dn

λ ,S
n−1
λ )∼=

⊕

λ
H∗

(

Dn
λ

(1
2

)
,Sn−1

λ

(1
2

))

∼=
⊕

λ
H∗

(

int(Dn
λ ), int (Dn

λ )−Dn
λ

(1
2

)
)

∼= H∗(Xn −Xn−1,X ′ −Xn−1)

∼= H∗(Xn,X ′)∼= H∗(Xn,Xn−1)

where the fourth isomorphism is excision.
This immediately gives (1) and (2). Then (3) follows by induction, and (4) and

(5) follow from the exact sequence of the pair (Xn,Xn−1). ��
Corollary 4.2.12. 1. Let m > n. Then the inclusion Xn ↪→ Xm induces isomor-

phisms Hi(Xn)→ Hi(Xm) for i < n and an epimorphism Hn(Xn)→ Hn(Xm).
2. If X is finite dimensional or H∗ is compactly supported, the inclusion Xn ↪→

X induces isomorphisms Hi(Xn) → Hi(X) for i < n and an epimorphism
Hn(Xn)→ Hn(X).

Proof. (2) Any compact subset of X is contained in Xm for some m (compare the
proof of Lemma 4.2.7). ��

With this lemma in hand, we now define cellular homology.

Definition 4.2.13. Let X be a CW-complex. The cellular chain complex of X is
defined by

Ccell
n (X) = Hn(X

n,Xn−1)

with ∂n : Ccell
n (X)→Ccell

n−1(X) the composition

Hn(X
n,Xn−1)

∂−→ Hn−1(X
n−1)−→ Hn−1(X

n−1,Xn−2). ♦
Lemma 4.2.14. Ccell∗ (X) is a chain complex.

Proof. We need only check that ∂n−1∂n = 0. But this is the composition

Hn(X
n,Xn−1)

∂−→ Hn−1(X
n−1)−→ Hn−1(X

n−1,Xn−2)

∂−→ Hn−2(X
n−2)−→ Hn−2(X

n−2,Xn−3)
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and the middle two maps are two successive maps in the exact homotopy sequence
of the pair (Xn−1,Xn−2), so their composition is the zero map. ��
Definition 4.2.15. Let X be a CW-complex. Then the cellular homology of X is the
homology of the cellular chain complex Ccell∗ (X) as defined in Definition A.2.2. ♦
Lemma 4.2.16. The group Ccell

n (X) is the free abelian group on the n-cells of X. If
αn

λ is the generator corresponding to the n-cell Dn
λ , λ ∈ Λn, then ∂ (αn

λ ) is given as
follows:

Hn(Dλ
n,Sλ )

∈

∂
H (Sλ )

fλ |Sλ
Hn−1(X ) H (Xn−1,Xn−2).

∈

αn
λ ∂(αn

λ)

n−1 n−1
n−1

n−1
n−1n−1

Proof. This follows directly from Lemma 4.2.11 and its proof. ��
We let Zcell

n (X) denote Ker(∂n) : Ccell
n (X) → Ccell

n−1(X) and Bcell
n (X) denote

Im(∂n+1) : Ccell
n+1(X)→Ccell

n (X), so that

Hcell
n (X) = Zcell

n (X)/Bcell
n (X).

Theorem 4.2.17. Let X be a CW-complex. Suppose that X is finite dimensional or
that H∗ is compactly supported. Then the cellular homology of X is isomorphic to
the ordinary homology of X.

Proof. We begin with the following purely algebraic observation. Suppose we have
three abelian groups and maps as shown:

H1 k←− H2 j−→ H3

where

1. k is a surjection.
2. j is an injection; set Z3 = Im( j).
3. There is a subgroup B3 ⊆ Z3 with j−1(B3) = Ker(k).

Then k◦ j−1 : Z3/B3 → H1 is an isomorphism with inverse j ◦ k−1. To see this, note
that j : H2 → Z3 is an isomorphism, so j−1 : Z3 → H2 is well-defined, and then we
have isomorphisms

Z3/B3 j−1

−−−→ H2/ j−1(B3) = H2/Ker(k)∼= H1.

Note also that j ◦ k−1 is well-defined, as j
(

Ker(k)
)
= B3.

We apply this here to construct isomorphisms, for each n,

Θn : Hcell
n (X)−→ Hn(X).
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Consider

Hn(X)
kn←− Hn(X

n)
jn−−→ Hn(X

n,Xn−1)

with the maps induced by inclusion. We must verify the three conditions above.
We have already shown (1), that kn is a surjection, in Corollary 4.2.12. Also,

(2) is immediate from 0 = Hn(Xn−1) → Hn(Xn) → Hn(Xn,Xn−1). Let us identify
Z3 = Im( jn). We have

∂n : Hn(Xn,Xn−1) ∂ jn−1

jn

0 = Hn−1(Xn−2)

Hn−1(Xn−1 ,Xn−2)

Hn(Xn)

Hn−1(Xn−1)

Then jn−1 is an injection, so

Im( jn) = Ker(∂ ) = Ker( jn−1 ◦ ∂ ) = Ker(∂n) = Zcell
n (X).

As for (3), we have

0 = Hn(Xn−1)

Hn(Xn) Hn(Xn+1)

Hn(Xn ,Xn−1)
∂n+1

∂

jn

kn

k̃n
Hn+1(Xn+1,Xn)

Hn(X)

Note that Hn(Xn+1)→ Hn(X) is an isomorphism. Also, Bcell
n+1(X) = Im(∂n+1) =

Im( jn ◦ ∂ )⊆ Im( jn). Then

j−1
n

(
Bcell

n+1(X)
)
= j−1

n

(
Im(∂n+1)

)
= j−1

n

(
Im( jn∂ )

)

= Im(∂ ) = Ker(k̃n) = Ker(kn).

Thus if Θn = kn ◦ j−1
n , we have an isomorphism

Θn : Zcell
n (X)/Bcell

n (X) = Hcell
n (X)

∼=−−→ Hn(X).

��
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Remark 4.2.18. Theorem 4.2.17 shows that the point of cellular homology is not
that it is different from ordinary homology. Rather, for CW-complexes (where it is
defined) it is the same. The point of cellular homology is that it is a better way of
looking at homology. It is better for two reasons.

The first reason is psychological. It makes clear how the homology of a CW-
complex comes from its cells.

The second reason is mathematical. If X is a finite complex, the cellular chain
complex of X is finitely generated. ♦

This inherent finiteness not only makes cellular homology easier to work with, it
allows us to effectively, and indeed easily, compute an important and very classical
invariant of topological spaces as well.

Recall that any finitely generated abelian group A is isomorphic to F ⊕T , where
F is a free abelian group of well-defined rank r (i.e., F is isomorphic to Z

r) and T
is a torsion group. In this case we define the rank of A to be r.

Definition 4.2.19. Let X be a space with Hi(X) finitely generated for each i, and
nonzero for only finitely many values of i. Then the Euler characteristic χ(X) is

χ(X) = ∑
i

(−1)i rank Hi(X).

♦
Theorem 4.2.20. Let X be a finite CW-complex. Then

χ(X) = ∑
i
(−1)i ·number of i-cells of X .

Proof. Let X have di i-cells and suppose di = 0 for i > n. We have the cellular chain
complex of X

0 −→Ccell
n (X)−→Ccell

n−1(X)−→ ·· · −→Ccell
1 (X)−→Ccell

0 (X)−→ 0

with Ccell
i (X) free abelian of rank di. But then it is purely algebraic result that

∑
i
(−1)idi = ∑

i
(−1)i rank Hcell

i (X)

and by Theorem A.2.13 this is equal to χ(X). ��
Remark 4.2.21. Note in particular that χ(X) is independent of the CW-structure on
X . For example, let X = Sn. Then χ(X) = 2 for n even and 0 for n odd. We have
seen in Example 4.2.9 three different CW-structures on X . In the first, X has a single
0-cell and a single n-cell. In the second, X has two i-cells for each i between 0 and n.
In the third, X has a single 0-cell, a single (n−1)-cell, and two n-cells. But counting
cells in any of these CW-structures gives χ(X) = 2 for n even and 0 for n odd. ♦

Remark 4.2.22. Let X be the surface of a convex polyhedron in R
3. It is a famous

theorem of Euler that, if V , E , and F denote the number of vertices, edges, and faces
of X , then
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V −E +F = 2.

But X is topologically S2 and regarding X as the surface of a polyhedron gives
a CW-structure on X with V 0-cells, E 1-cells, and F 2-cells, so this equation is a
special case of Theorem 4.2.20.

For example, we may compute V −E +F for each of the five Platonic solids.

Tetrahedron: 4− 6+ 4= 2,
Cube: 8− 12+ 6= 2,
Octahedron: 6− 12+ 8= 2,
Dodecahedron: 20− 30+ 12= 2,
Icosahedron: 12− 30+ 20= 2. ♦
Recall that we considered covering spaces in Sect. 2.2. In general, if X̃ is a

covering space X , there is no simple relationship between the homology groups of
X̃ and the homology groups of X . There is, however, a simple relationship between
their Euler characteristics.

Theorem 4.2.23. Let X be a finite CW-complex. Let X̃ be an n-fold cover of X.
Then χ(X̃) = nχ(X).

Proof. Given any cell decomposition of X , we may refine it to obtain a cell
decomposition so that every cell is evenly covered by the covering projection. Then
the inverse image of every cell is n cells, so the theorem immediately follows from
Theorem 4.2.20. ��
Example 4.2.24. Let R be a k-leafed rose, and let R̃ be any n-fold cover of R. Then R
has one 0-cell and k 1-cells, so χ(R)= 1−k (which of course agrees with H0(R)=Z

and H1(R) = Z
k). Then χ(R̃) = n(1−k). Now H0(R̃) = Z (as by definition, a cover

is connected), so we must have

1− rank H1(R̃) = n(1− k)

and hence H1(R̃) = Z
n(k−1)+1. (Compare Corollary 2.4.6.) ♦

Definition 4.2.25. Let X and Y be CW -complexes. A cellular map f : X → Y is a
map f : X → Y with the property that f (Xn)⊆ Y n for every integer n. ♦
Lemma 4.2.26. Let f : X →Y be a cellular map. Then for each i, f induces a map
f cell
i : Hcell

i (X)→ Hcell
i (Y ).

Proof. By hypothesis, f induces a map Hi(Xn,Xn−1) → Hi(Y n,Y n−1) for each i
and n, and then it is easy to check this induces a map on cellular homology. ��

Now given CW-complexes X and Y and a cellular map f : X → Y , we have fi :
Hi(X)→ Hi(Y ) and f cell

i : Hcell
i (X)→ Hcell

i (Y ). But we know that Hcell
i (X) “agrees

with” Hi(X) and that Hcell
i (Y ) “agrees with” Hi(Y ). We would thus hope that f cell

i
“agrees with” fi, and that is indeed the case.
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Theorem 4.2.27. Let X and Y be CW-complexes and let f : X → Y be a cellular
map. Then the following diagram commutes:

Hi
cell(X)

fi

Hi
cell(Y)

f cell
i

Θi

Θi

Hi(X)

Hi(Y)

Proof. This follows easily from the commutativity of the diagram

Hi(Y n−1)

Hi(Xn−1) Hi(Xn) Hi(Xn,Xn−1)

Hi(Y n,Y n−1)Hi(Y n)

where the vertical maps are all induced by f . ��
This theorem, together with the following theorem, known as the cellular

approximation theorem, which we shall not prove, enables us to always use cellular
homology to compute maps on homology between CW-complexes.

Theorem 4.2.28. Let f : X → Y be an arbitrary map, where X and Y are CW-
complexes. Then f is homotopic to a cellular map.

Remark 4.2.29. All of this generalizes in a completely straightforward way to CW-
pairs (X ,A), where X is a CW-complex and A is a subcomplex, with chain groups

Ccell
n (X ,A) = Hn(X

n ∪A,Xn−1 ∪A)

and boundary maps

Hn(X
n ∪A,Xn−1 ∪A)−→ Hn−1(X

n−1 ∪A)−→ Hn−1(X
n−1 ∪A,Xn−2 ∪A),

and Ccell
n (X ,A) is isomorphic to the free abelian group on the n-cells of X that are

not contained in A. ♦
Let us see that for cellular homology we have a strong form of excision.

Theorem 4.2.30. Let (X ,A) be a CW-pair and let U ⊆ A be such that (Y,B) =
(X −U,A−U) is a CW-pair. Then the inclusion (Y,B) → (X ,A) is excisive for
cellular homology.

Proof. First observe that the hypothesis on U implies that U is a union of open cells
of A. Let Fn be the free abelian group on the n-cells of X that are not contained in
A, which are exactly the n-cells of Y that are not contained in B. Then we have a
commutative diagram
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Hn(Y n ∪ B,Y n−1 ∪B) Hn−1(Y n−1 ∪B) Hn−1(Y n−1 ∪ B,Y n−2 ∪B)

Fn

∼=

∼=

Fn−1

∼=

∼=
Hn(Xn ∪ A,X n−1 ∪A) Hn−1(Xn−1 ∪A) Hn−1(Xn−1 ∪ A,X n−2 ∪B)

giving an isomorphism between the chain complexes Ccell
n (Y,B) and Ccell

n (X ,A), and
hence an isomorphism between their homology groups. ��

Recall that we defined the degree of a map f : Sn → Sn in Definition 4.1.8. With
the use of cellular homology, we now show the following result. (Note this holds for
any ordinary homology theory with Z coefficients as a consequence of the axioms.
In the next chapter we will prove it for singular homology theory with Z coefficients
by an entirely different geometric idea.)

Theorem 4.2.31. Let d be any integer. Then for any integer n ≥ 1, there exists a
map of f : Sn → Sn of degree d.

Proof. We prove this by induction on n. This is an argument where the base case
n = 1 is the hardest, and the induction step is easy.

We claim that f : S1 → S1 by f (z) = zd is a map of degree d, where we regard S1

as the unit circle in the complex plane.
We now proceed to prove this claim.
Instead of working with S1 directly it is easiest to first work with the interval

I = [0,1]. We have w : (I,∂ I)→ (S1,1) by w(t) = exp(2π it) and we know w induces
an isomorphism on homology w∗ : H1(I,∂ I)→ H1(S1,1)∼= H1(S1). (Indeed, w is a
cellular map where I has the CW-structure with two 0-cells, the points of ∂ I, and
a single 1-cell c, and S1 has the CW-structure with a single 0-cell 1 and a single
1-cell.)

Let c be the generator of H1(I,∂ I) with ∂c = {1}−{0}. We now give I a new
CW-structure with 0-cells pk = k/d, k = 0, . . . ,d, and 1-cells Ik the subinterval
[pk−1, pk], k = 1, . . . ,d. We let ck be the generator of H1(Ik,∂ Ik) with ∂ck =
pk − pk−1. It is then easy to compute that c1 + · · ·+ cd is the generator of H1(I,∂ I)
with ∂ (c1 + · · ·+ cd) = {1}−{0}, so c1 + · · ·+ cd = c ∈ H1(I,∂ I).

Let γ = w∗(c) be a generator of S1. (In fact γ = σ1 is the standard generator.)
Then

γ = w∗(c) = w∗(c1 + · · ·+ cd) = w∗(c1)+ · · ·+w∗(cd)

so

f∗(γ) = f∗w∗(c1)+ · · ·+ f∗w∗(cd) = ( f w)∗(c1)+ · · ·+( f w)∗(cd).
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Now for k = 1, . . . ,d, let vk : Ik → I by vk(t) = d(t − (k − 1)/d). Then vk :
(Ik,∂ Ik) → (I,∂ I) with ∂ ((vk)∗(ck)) = {1}− {0} = ∂c, so (vk)∗(ck) = c (as ∂ :
H1(I,∂ I)→ H0(∂ I) is an injection).

But note that

f w = wvk : Ik −→ S1, k = 1, . . . ,d.

Thus

f∗(γ) = ( f w)∗(c1)+ · · ·+( f w)∗(cd)

= (wv1)∗(c1)+ · · ·+(wvd)∗(cd)

= w∗((v1)∗(c1))+ · · ·+w∗((vd)∗(cd))

= w∗(c)+ · · ·+w∗(c) = dw∗(c) = dγ

as claimed, completing the proof of the n = 1 case.
The inductive step then follows immediately from Theorem 3.2.13. If f : Sn → Sn

has degree d, then

Σ f : Sn+1 −→ Sn+1

also has degree d (where Σ is the suspension). ��
Remark 4.2.32. This theory dualizes to obtain cellular cohomology Hn

cell(X) for a
CW-complex X (or Hn

cell(X ,A) for a CW-pair (X ,A)). The cellular cochain complex
of X is given by

Cn
cell = Hn(Xn,Xn−1)

with δ n : Cn
cell(X)→Cn+1

cell (X) the composition

Hn(Xn,Xn−1)−→ Hn(Xn)
δ−→ Hn+1(Xn+1,Xn),

and similarly for (X ,A). ♦
Note that if X has only finitely many cells in each dimension, each cellular chain

group, and hence each cellular cochain group, is a finitely generated free abelian
group.

Theorem 4.2.33. Let X be a CW-complex with only finitely many cells in each
dimension. Then for each n, Hcell

n (X) and Hn
cell(X) are finitely generated abelian

groups.

Proof. Hcell
n (X) is a quotient of Zcell

n (X), which is a subgroup of a finitely generated
free abelian group, and hence itself is a finitely generated free abelian group, and
similarly for Hn

cell(X). ��
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4.3 Real and Complex Projective Spaces

In this section we define real and complex projective spaces and compute their
homology. As we will see, the computation is almost trivial for complex projective
spaces but rather tricky for real projective spaces.

The first part of our development is almost identical in both cases so we handle
them simultaneously. We let F= R or C.

Definition 4.3.1. The projective space FPn is the space of lines through the origin
in F

n+1 with the following topology. Let S denote the unit sphere in F
n+1. Then, for

ε > 0, an ε-neighborhood of the line L0 consists of all lines L whose intersection
with S lies in an ε-neighborhood of L0 ∩S. ♦

Note by lines here we mean F-lines, i.e., F-vector spaces of dimension 1.
Given a point t = (t1, . . . , tn+1) of Fn+1 other than the origin, we have the line

L through the origin and t which we denote by [t1, . . . , tn+1]; these are called the
homogeneous coordinates of L. We thus have a map π : Fn+1 − {0} → FPn by
(t1, . . . , tn+1) �→ [t1, . . . , tn+1] with π(tt1, . . . , ttn+1) = π(t1, . . . , tn+1) for any t ∈ F

∗ =
F−0, and we may regard FPn as the quotient of the space Fn+1−0 under this action
of F∗. Alternatively, restricting our attention to points (t1, . . . , tn+1) of (Euclidean)
norm 1, i.e., the unit sphere S, we have an action of G = {t ∈ P

∗ | |t| = 1} on
S and FPn is the quotient of S by this action. (It is routine to check that the
topology of FPn agrees with the quotient topology from these actions.) If F = C,
then S = S2n+1 and G = {z ∈ C | |z| = 1} is the unit circle. If F = R, then S = Sn

and G = {x ∈ R | |x|= 1}= {±1}.
We may regard Fn ⊂ F

n+1 as the subspace of points with last coordinate tn+1 = 0.
Then we get a corresponding inclusionFPn−1 ⊂FPn with FPn−1 = {[t1, . . . , tn,0]}⊂
FPn.

Theorem 4.3.2. Let d = dimRF (so that d = 1 if F= R and d = 2 if F= C). Then
FPn has a CW-structure with one cell in dimension di for each i = 0, . . . ,n.

Proof. By induction on n.
For n = 0, FP0 is just a point.
Assume now the theorem is true for n− 1. We shall show that FPn −FPn−1 is a

single cell of dimension dn, which, by induction, completes the proof.
Now FPn −FPn−1 = {[t1, . . . , tn+1] | tn+1 �= 0}. Let D be the unit ball in F

n, D =
{(t1, . . . , tn) | ∑ |ti|2 ≤ 1}, and let S be its boundary.

We have a map (D,S)→ (FPn,FPn−1) given by

(
t1, . . . , tn

) �−→
[

t1, . . . , tn,
√

1−|t|2
]

,

where |t|2 = t2
1 + · · ·+ t2

n , and where we choose the positive square root.
Observe that this map restricts to a homeomorphism from int(D) to FPn−FPn−1,

(and on S it is the map (t1, . . . , tn) �→ [t1, . . . , tn,0] so S maps onto FPn−1).
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Thus FPn is obtained from FPn−1 by adjoining D. But D is a single cell of (real)
dimension dn. ��
Theorem 4.3.3. The homology of CPn is as follows:

Hi(CPn) =

⎧
⎪⎪⎨

⎪⎪⎩

0 i > 2n

Z 0 ≤ i ≤ 2n even

0 0 < i < 2n odd.

Proof. The cellular chain complex of CPn is

0 −→ Z−→ 0 −→ Z−→ ·· · −→ Z−→ 0 −→ Z−→ 0

with Z in every even dimension between 0 and 2n, and 0 otherwise. ��
Theorem 4.3.4. The homology of RPn is as follows:

Hi(RPn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i > n

0 i = n, n even

Z i = n, n odd

Z2 0 < i < n, i odd

0 0 < i < n, i even

Z i = 0.

Proof. The cellular chain complex of RPn is, by Lemma 4.2.11,

0 −→ Z
∂n−−→ Z

∂n−1−−−→ Z−→ ·· ·Z ∂1−−→ Z−→ 0

with Z occurring in every dimension between 0 and n. We shall show that (with
proper choice of generator), ∂i is multiplication by 1+(−1)i, which yields the result.

Again we proceed by induction on n. For n = 0, RP0 is a point, and its homology

is as stated. For n = 1, we have the chain complex 0 → Z
∂1−→ Z → 0 and since

H0(RP1) = Z, we must have ∂1 the 0 map. (Actually, we first encountered RPn in
Example 2.3.4, where we observed that RP1 = S1, and we know the homology of
S1.)

We know that the inclusion of RPn−1 into RPn induces isomorphisms on
homology except possibly in dimensions n− 1 and n, by Lemma 4.2.11.

By induction, we only need to determine the map

Z
∂n−−→ Z

in the above chain complex.
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There are two cases, n even and n odd.
First consider the case n odd. Then the above map is

Hn(RPn,RPn−1)
∂n−−→ Hn−1(RPn−1,RPn−2).

But recall that this map was defined to be the composition

Hn(RPn,RPn−1)−→ Hn−1(RPn−1)−→ (RPn−1,RPn−2)

and by the inductive hypothesis Hn−1(RPn−1) = 0 (as n−1 is even) so this must be
the 0 map.

Now consider the case n even.
Let π : Sn → RPn be the 2-fold covering map, i.e., π((x1, . . . ,xn+1)) =

[x1, . . . ,xn+1].
Let T+ : (Dn,Sn−1) → (Sn,Sn−1) be the map T (x1, . . . ,xn) = (x1, . . . ,xn,√
1−|x|2), where |x|2 = x2

1 + · · · + x2
n, and let T− : (Dn,Sn−1) → (Sn,Sn−1)

be the composition T− = a ◦ T+, where a : Dn → Dn is the antipodal map,
a(x1, . . . ,xn) = (−x1, . . . ,−xn). Note that T+ and T− are the attaching maps of two
n-cells to Sn−1 in forming a CW-structure on Sn. Note also that if f : (Dn,Sn−1)→
(RPn,RPn−1) is the attaching map of the n-cell to RPn−1 in forming a CW-structure
on RPn, then f = π ◦ T+ = π ◦ T−1. Since f∗ : Hn(Dn,Sn−1) → Hn(RPn,RPn−1)
is an isomorphism, it follows that π∗ : Hn(Sn,Sn−1) → Hn(RPn,RPn−1) is an
epimorphism.

Now consider the commutative diagram

0

a∗ a∗ a∗

0

0 0

Hn−1(S n−1)

Hn−1(S n−1) Hn−1(S n−1, S n−2) Hn−2(S n−2)

Hn−2(S n−2)Hn−1(S n−1, S n−2)

Let e denote a generator of Hn−1(Dn−1,Sn−2) ∼= Z. Then Hn−1(Sn−1,Sn−2) ∼=
Z⊕Z generated by t+ = T+∗ (e) and t− = T−∗ (e). We have seen in Lemma 4.1.9
that a∗ : Hi(Si)→ Hi(Si) has degree (−1)i+1, so a∗ : Hn−2(Sn−2)→ Hn−2(Sn−2) is
multiplication by −1. Also, a∗(t+) = t− and a∗(t−) = t+. Chasing the right-hand
square, this shows that t++ t− is in the kernel of Hn−1(Sn−1,Sn−2)→ Hn−2(Sn−2),
and, since t+ cannot be in the kernel (as then this map would be the zero map, while
by exactness it must be an epimorphism), t++ t− in fact generates the kernel. Thus,
by exactness, there is a generator g of Hn−1(Sn−1) whose image in Hn−1(Sn−1,Sn−2)
is t++ t−.

Now we have a commutative diagram
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Hn(S n, S n−1) Hn−1(S n−1)

π∗ π∗ π∗
ρ∗

i∗

∂
Hn−1(RP n−1)

j∗
Hn(RP n,RP n−1) Hn−1(RP n−1,RP n−2)

Hn−1(S n−1, S n−2)

where the composition of the two maps in the bottom row is the boundary map
in the cellular chain complex of RPn. We have observed that the left-hand vertical
map is an epimorphism, and, by the exact sequence of the pair (Sn,Sn−1), the left-
hand horizontal map in the top row is an epimorphism as well. Thus the image of
∂ : Hn(RPn,RPn−1)→ Hn−1(RPn−1) agrees with the image of π∗ : Hn−1(Sn−1)→
Hn−1(RPn−1). Hence there is a generator e of Hn(RPn,RPn−1) with ∂ (e) = π∗(g).

To compute the boundary map in the cellular chain complex we must find
j∗(∂ (e)). By commutativity that is equal to ρ∗(g).

Now consider the right-hand square in the diagram. By construction, i∗(g)= t++
t−. (Also, j∗ is an isomorphism, by the exact sequence of the pair (RPn−1,RPn−2).)
Observe that π ◦ a = π . Since Hn−1(Sn−1,Sn−2) = Z⊕Z is generated by the two
classes t+ and t−, and t− = a∗(t+), and π∗ : Hn−1(Sn−1) → Hn−1(RPn−1) is an
epimorphism, we see that Hn−1(RPn−1,RPn−2) is generated by u = π∗(t+).

But then

j∗(∂ (e)) = ρ∗(g) = π∗(i∗(g))

= π∗(t++ t−)

= π∗(t+)+π∗(t−)

= π∗(t+)+π∗(a∗(t+))

= π∗(t+)+(πa)∗(t+)

= π∗(t+)+π∗(t+)

= 2u.

Thus, with this choice of generators,

Z
∂n−−→ Z

is a multiplication by 2, as claimed, and we are done. ��

4.4 Exercises

Exercise 4.4.1. Complete the proof of Lemma 4.2.11.

Exercise 4.4.2. Verify the proof of Lemma 4.2.16.
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Exercise 4.4.3. Complete the proof of Lemma 4.2.26.

Exercise 4.4.4. Let f : Sn → Sn be fixed-point free, i.e., f (x) �= x for every x ∈ Sn.
Show that f has degree (−1)n+1.

Exercise 4.4.5. Let f : Sn → Sn be a map with nonzero degree. Show that f is onto
Sn, i.e., that for every y ∈ Sn there is an x ∈ Sn with f (x) = y.

Exercise 4.4.6. Let S be the Riemann sphere, i.e., S = C ∪ {∞} where C, the
complex plane, has its usual topology, and a basis for the neighborhoods of the
point ∞ is {∞}∪{z ∈C | |z|> N} for N = 1,2,3, . . .. Show that S is homeomorphic
to S2.

Exercise 4.4.7. Let p be a polynomial with complex coefficients, which we regard
as defining a map p : C→C by z �→ p(z). Show that p extends to a map p̃ : S → S as
follows: If p(z) = a0 is a constant polynomial, then p̃(∞) = a0. If p is a nonconstant
polynomial, then p̃(∞) = ∞. (Of course, map means continuous map.)

Exercise 4.4.8. Suppose that p is a polynomial of degree d. (Here we define the
degree of any constant polynomial to be 0.) Show that p̃ : S→ S is a map of degree d.

Exercise 4.4.9. Prove the Fundamental Theorem of Algebra: Every nonconstant
complex polynomial has a complex root.

Exercise 4.4.10. Let r = p/q be a quotient of nonzero complex polynomials. Show
that r naturally defines a map r̃ : S → S. Furthermore, if p and q are polynomials of
degree m and n respectively, show that r̃ is a map of degree m− n.

Exercise 4.4.11. Compute the homology of the 2-torus T by a Mayer-Vietoris
argument. T is

Exercise 4.4.12. Compute the homology of Sg, the surface of genus g. These are
given by S0 = S2, the 2-sphere; S1 = T , the 2-torus, and Sg for g > 1 as pictured
below:

S3

etc.

S2
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Exercise 4.4.13. Let X = X1 ∪ X2, A = X1 ∩ X2, and suppose that the inclusion
(X1,A) → (X ,X2) is excisive. If H∗(A), H∗(X1), and H∗(X2) are all finitely gen-
erated, show that H∗(X) is finitely generated and furthermore that

χ(X) = χ(X1)+ χ(X2)− χ(A).

Exercise 4.4.14. A Platonic solid is a tessellation of the surface of a convex
polyhedron in R

3 by mutually congruent polygons. Show that the only Platonic
solids are the five listed in Remark 4.2.22.

Exercise 4.4.15. Let V and F be any positive integers and let E be any nonnegative
integer with V −E +F = 2. Show there is a CW structure on S2 with V 0-cells, E
1-cells, and F 2-cells.

Exercise 4.4.16. Suppose X and Y are CW-complexes. Show that X ×Y is a CW-
complex.

Exercise 4.4.17. Suppose X and Y are finite CW-complexes. Show that χ(X×Y ) =
χ(X)χ(Y ).

Exercise 4.4.18. Let X be a CW-complex with X = X1 ∪X2 with X1, X2, and A =
X1∩X2 subcomplexes. Show that if any three of H∗(X), H∗(X1), H∗(X2), and H∗(A)
are finitely generated, so is the fourth. (Observe in this case χ(X)= χ(X1)+χ(X2)−
χ(A).)

Exercise 4.4.19. Give an example of a CW complex X with H∗(X) finitely
generated, but X = X1 ∪X2 with X1, X2, and A = X1 ∩X2 subcomplexes with none
of H∗(X1), H∗(X2), and H∗(A) finitely generated.

Exercise 4.4.20. Recall that X is an m-dimensional CW-complex if it has at least
one m-cell, but no k-cells for k > m. Suppose that X is an m-dimensional CW-
complex and that Y is an n-dimensional CW-complex with m �= n. Show that X and
Y are not homeomorphic.



Chapter 5
Singular Homology Theory

In this chapter we develop singular homology, an ordinary homology theory, and
derive many of its properties.

We begin with Hn(X) or Hn(X ;Z) (resp. Hn(X ,A) or Hn(X ,A;Z)), which is
an ordinary homology theory with Z coefficients. But we further derive from
this singular homology theory with arbitrary coefficients, as well as singular
cohomology theory (with arbitrary coefficients).

5.1 Development of the Theory

In this section we construct a nontrivial homology theory, singular homology. It is
an ordinary homology theory, and the coefficient group is the integers Z.

There are two approaches to singular homology: via singular cubes or singular
simplices. Each has advantages and disadvantages, but for our purposes singular
cubes are much preferable, and so we use them. (Both approaches yield the same
results. The question is which is technically simpler.) In particular, the use of
singular cubes makes it easier to derive chain homotopies from homotopic maps,
and makes it easier to derive results on the homology of product spaces.

We begin with the standard cube and its faces.

Definition 5.1.1. The standard 0-cube I0 is the point 0 ∈ R
0. For n ≥ 1, the

standard n-cube is

In = {x = (x1,x2, . . . ,xn) ∈ R
n | 0 ≤ xi ≤ 1, i = 1, . . . ,n}.

Its i-th front face is

Ai = Ai(I
n) = {x ∈ In | xi = 0}

© Springer International Publishing Switzerland 2014
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and its i-th back face is

Bi = Bi(I
n) = {x ∈ In | xi = 1}. ♦

Definition 5.1.2. Let In be the standard n-cube. Its boundary is given by

∂ I0 = 0

and

∂ I0 =
n

∑
i=1

(−1)i(Ai −Bi)

for n > 0. ♦
In this definition, ∂ In is considered to be an element in the free abelian group

generated by {Ai,Bi | i = 1, . . . ,n}. We then have the following basic lemma:

Lemma 5.1.3. For any n, ∂ (∂ In) = 0.

Proof. For n ≤ 1 this is clear.
For n≥ 2, ∂ (∂ In) is an element in the free abelian group generated by the (n−2)-

faces of In, i.e., by the subsets, for each i �= j and each εi = 0 or 1, ε j = 0 or 1,

{x ∈ In | xi = εi, x j = ε j}.

Geometrically, each (n− 2)-face of In is a free of two (n− 1)-faces, and the signs
are chosen in Definition 5.1.2 so that they cancel. This is a routine but tedious
calculation. ��
Definition 5.1.4. Let X be a topological space.

A singular n-cube of X is a map Φ : In → X . ♦
We let αi : In−1 → In be the inclusion of the i-th front face and βi : In−1 → In be

the inclusion of the i-th back face, i.e.

αi(x1, . . . ,xn−1) = (x1, . . . ,xi−1,0,xi, . . . ,xn−1)

βi(x1, . . . ,xn−1) = (x1, . . . ,xi−1,1,xi, . . . ,xn−1).

Definition 5.1.5. For n ≥ 2, a singular n-cube f : In → X is degenerate if the value
of f is independent of at least one coordinate xi, i.e., if there is a singular (n− 1)-
cube Ψ : In−1 → X with

Φ(x1, . . . ,xn) =Ψ (x1, . . . ,xi−1,xi+1, . . . ,xn).

A singular 0-cube is always non-degenerate. ♦
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Observe that in the degenerate case we have, in particular,

Φαi = Φβi =Ψ : In−1 −→ X , for n ≥ 1.

Definition 5.1.6. Let X be a topological space. The group Qn(X) is the free abelian
group generated by the singular n-cubes of X . The subgroup Dn(X) is the free
abelian group generated by the degenerate singular n-cubes. (In particular, D0(X) =
{0}.)

For each n ≥ 0, the boundary map ∂ Q
n = ∂ Q is defined by ∂ Q = 0 if n = 0, and if

n ≥ 1, and Φ : In → X is a singular n-cube,

∂ QΦ =
n

∑
i=1

(−1)i(AiΦ −BiΦ) ∈ Qn−1(X)

where AiΦ = Φαi : In−1 → X and BiΦ = Φβi : In−1 → X . ♦
Lemma 5.1.7. (1) ∂ Q

n−1∂ Q
n : Qn(X)→ Qn−2(X) is the 0 map.

(2) ∂ Q(Dn(X))⊆ Dn−1(X).

Corollary 5.1.8. Let Cn(X)=Qn(X)/Dn(X). Then ∂ Q
n : Qn(X)→Qn−1(X) induces

∂n : Cn(X)→Cn−1(X) with ∂n−1∂n = 0.

Definition 5.1.9. The chain complex C(X):

· · · −→C2(X)
∂2−−→C1(X)

∂1−−→C0(X)
∂0−−→ 0 −→ 0 −→ ·· ·

is the singular chain complex of X . ♦
Definition 5.1.10. The homology of the singular chain complex of X is the singular
homology of X . ♦

To quote the definition of the homology of a chain complex from Sect. A.2:

Zn(X) = Ker(∂n : Cn(X)−→Cn−1(X)), the group of singular n-cycles,

Bn(X) = Im(∂n+1 : Cn+1(X)−→Cn(X)), the group of singular n-boundaries,

Hn(X) = Zn(X)/Bn(X), the n-th singular homology group of X

We now define the homology of a pair.

Definition 5.1.11. Let (X ,A) be a pair. The relative singular chain complex C(X ,A)
is the chain complex

· · ·−→C2(X)/C2(A)
∂−→C1(X)/C1(A)

∂−→C0(X)/C0(A)
∂−→0−→0−→·· · .

Its homology is the singular homology of the pair (X ,A). ♦
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Finally, we define the induced map on homology of a map of spaces, or of pairs.

Lemma 5.1.12. Let f : X →Y be a map. Then f induces a chain map { fn : Cn(X)→
Cn(Y )} where fn : Cn(X)→Cn(Y ) as follows. Let Φ : In → X be a singular n-cube.
Then fnΦ = f Φ : In →Y where f Φ denotes the composition. Similarly f : (X ,A)→
(Y,B) induces a map fn : Cn(X ,A)→Cn(Y,B) by composition.

This chain map induces a map on singular homology { fn : Hn(X)→ Hn(Y )} and
similarly { fn : Hn(X ,A)→ Hn(Y,B)}.

Proof. This would be immediate if we were dealing with Qn(X) and Qn(Y ). But
since f Φ is degenerate wherever Φ is, it is just about immediate for Cn(X) and
Cn(Y ).

Then the fact that we have maps on homology is a direct consequence of
Lemma A.2.7. ��
Definition 5.1.13. The above maps { fn : Hn(X) → Hn(Y )} or { fn : Hn(X ,A) →
Hn(Y,B)} are the induced maps on singular homology by the map f : X → Y or the
map f : (X ,A)→ (Y,B). ♦

We now verify that singular homology satisfies the Eilenberg-Steenrod axioms.

Theorem 5.1.14. Singular homology satisfies Axioms 1 and 2.

Proof. Immediate from the definition of the induced map on singular cubes as
composition. ��
Theorem 5.1.15. Singular homology satisfies Axiom 3.

Proof. Immediate from the definition of the boundary map on singular cubes and
from the definition of the induced map on singular cubes as composition. ��
Theorem 5.1.16. Singular homology satisfies Axiom 4.

Proof. We have defined Cn(X ,A) =Cn(X)/Cn(A). Thus for every n, we have a short
exact sequence

0 −→Cn(A)−→Cn(X)−→Cn(X ,A)−→ 0.

In other words, we have a short exact sequence of chain complexes

0 −→C∗(A)−→C∗(X)−→C∗(X ,A)−→ 0.

But then we have a long exact sequence in homology by Theorem A.2.10. ��
Theorem 5.1.17. Singular homology satisfies Axiom 5.

Proof. For simplicity we consider the case of homotopic maps of spaces f : X → Y
and g : X → Y (rather than maps of pairs). Then by definition, setting f0 = f and
f1 = g, there is a map F : X × I → Y with F(x,0) = f0(x) and F(x,1) = f1(x).
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Define a map F̃ : Cn(X) → Cn+1(Y ) as follows. Let Φ : In → X be a singular
n-cube. Then F̃Φ : In+1 → Y is defined by

F̃Φ(x1, . . . ,xn+1) = F(Φ(x1, . . . ,xn),xn+1).

Then it is routine (but lengthy) to check that F provides a chain homotopy
between f∗ : C∗(X) → C∗(Y ) and g∗ : C∗(X) → C∗(Y ), so that f∗ = g∗ : H∗(X) →
H∗(Y ) by Lemma A.2.9. ��
Theorem 5.1.18. Singular homology satisfies Axiom 6.

We shall not prove that singular homology satisfies Axiom 6, the excision axiom.
This proof is quite involved. We merely give a quick sketch of the basic idea.
Consider a singular chain, say c, the singular 1-cube which is the illustrated path

X

A

U

This chain is too large, and we subdivide it as illustrated.

X

A

U

Then we show c is homologous to c1 + c2 with c1 (resp. c2) the left (resp. right)
subpaths in C∗(X ,A). But c1 is in the image of the inclusion C∗(X −U,A−U)→
C∗(X ,A).

Let us now compute the singular homology of a point.

Theorem 5.1.19. Let X be the space consisting of a single point. Then H0(X)∼= Z

and Hi(X) = 0 for i �= 0. Thus singular homology satisfies the dimension axiom,
Axiom 7, and has coefficient group Z.

Proof. Let Φ : I0 → X be the unique map. Then C0(X) is the free abelian group
generated by Φ . On the other hand, for any i > 0, Φ : Ii → X is a degenerate i-cube.
Hence Ci(X) = {0} for i > 0. Thus C∗(X) is the chain complex

· · · −→ 0 −→ 0 −→ Z−→ 0 −→ 0 −→ ·· ·

with homology as stated. ��
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Remark 5.1.20. It is to make Theorem 5.1.19 hold that we must use Ci(X) =
Qi(X)/Di(X) rather than work with Qi(X) itself. Let X be a point. Then in Qi(X)

we have, for each i, the unique map Φ : Ii → X , and ∂ Q
i Φ = 0 as the front and back

faces cancel each other out. Then Q∗(X) is the chain complex

· · · −→ Z−→ Z−→ Z−→ 0 −→ 0 −→ ·· ·

with each boundary map being the 0 map, and this chain complex has homology Z

in every nonnegative dimension.
However, it is not just that this complex gives the “wrong” answer. Rather, it

is that it gives the wrong answer for a stupid reason, the presence of all these
geometrically meaningless singular cubes. So we divide out by them to get a
geometrically meaningful theory. ♦

As in Chap. 4, we once and for all establish an isomorphism between H0(∗) and
Z by choosing a generator 1∗ ∈ H0(∗) which we identify with 1 ∈ Z.

Definition 5.1.21. The class 1∗ ∈ H0(∗) is the homology class represented by the
unique map Φ : I0 → ∗. Then for any space p consisting of a simple point, the
class 1p ∈ H0(p) is 1p = f0(1∗) where f : ∗ → p is the unique map. (More simply,
Ip ∈ H0(p) is the homology class represented by the unique map Φ : I0 → p.) ♦

Let us make a definition and a pair of observations.

Definition 5.1.22. Let X be a space and let c ∈ Cn(X) be a singular chain. Choose
a representative of c of the form ∑N

i=0 miΦi where mi �= 0 for each i and Φi is a non-
degenerate singular n-cube for each i. The support of c, supp(c), is defined to be /0
if N = 0, and otherwise supp(c) =

⋃N
i=0 Φi(In)⊆ X . ♦

Lemma 5.1.23. For any singular chain c, supp(∂c)⊆ supp(c).

Theorem 5.1.24. For any singular chain c, supp(c) is a compact subset of X.

Proof. For any Φ : In → X , Φ(In) is a compact subset of X as it is the continuous
image of a compact set. Then for any singular chain c, supp(c) is a finite union of
compact sets and hence is compact. ��
Corollary 5.1.25. Let X be a union of components, X =

⋃
i∈I Xi. Then for any n,

Hn(X) =
⊕

i∈I Hn(Xi).

Proof. This follows for any generalized homology theory from Lemma 3.2.1 if
there are only finitely many components. But for singular homology theory, if
c∈Cn(X) is any chain, then supp(c) is compact, by Theorem 5.1.24, so is contained
in

⋃
i∈J Xi for some finite subset J of I. Thus Cn(X) =

⊕
i∈I Cn(Xi). But clearly

∂ : Cn(Xi) → Cn−1(Xi−1) for any i, so as chain complexes C∗(X) =
⊕

i∈I C∗(Xi)
and hence H∗(X) =

⊕
i∈I H∗(Xi). ��

We record the following result for future use.
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Lemma 5.1.26. (1) For any space X, the group of singular n-chains Cn(X) is
isomorphic to the free abelian group with basis the non-degenerate n-cubes.

(2) For any pair (X ,A), the group Cn(X ,A) is isomorphic to the free abelian group
with basis those non-degenerate n-cubes whose support is not contained in A.

(3) The short exact sequence

0 −→Cn(A)−→Cn(X)−→Cn(X ,A)−→ 0

splits, and hence Cn(X) is isomorphic to Cn(A)⊕Cn(X ,A).

Proof. This follows easily once we recall that Cn(X) =Qn(X)/Dn(X) where Qn(X)
is the free abelian group on all n-cubes and Dn(X) is the free abelian group on the
degenerate n-cubes ��

We also record the following definition.

Definition 5.1.27. A space X is of finite type if Hn(X) is finitely generated for
each n. ♦

5.2 The Geometric Meaning of H0 and H1

In this section we see the geometric content of the singular homology groups H0(X)
and H1(X).

Theorem 5.2.1. Let X be a space. Then H0(X) is isomorphic to the free abelian
group on the path components of X.

Proof. We assume X nonempty. We have already seen in Corollary 5.1.25 that if
X = X1 ∪X2 ∪ ·· · is a union of path components, then Hi(X) =

⊕
k Hi(Xk). Thus

it satisfies to prove the theorem in case X is path connected, so we make that
assumption.

A singular 0-simplex of X is f (∗) = x for some x ∈ X , so we may identify C0(X)
with the free abelian group on the points of X , C0(X) = {∑i nixi | ni ∈ Z, xi ∈ X}.
Since C−1(X) = 0, Z0(X) =C0(X), i.e., every chain is a cycle. Let ε : Z0(X)→Z by
ε(∑i nixi) = ∑i ni. We claim that ε is a surjection with kernel B0(X). Then H0(X) =
Z0(X)/B0(X)∼= Z.

Now to prove the claim. First, ε is obviously surjective: Choose x ∈ X . Then for
any n, ε(nx) = n. Next, Ker(ε) ⊇ B0(X): B0(X) is generated by the boundaries of
singular 1-simplices. But a singular 1-simplex is a map f : I → X , and the boundary
of that is q− p where q = f (1) and p = f (0). Then ε(q− p) = 1− 1 = 0. Finally,
B0(X)⊆ Ker(ε): Suppose ε(∑i nixi) = 0, i.e., ∑i ni = 0. Rewrite nixi as xi+ · · ·+xi,
where there are ni terms, if ni > 0, or as −xi − ·· · − xi, where there are |ni| terms,
if ni < 0. Then ∑i nixi = x′1 + · · ·+ x′k +(−x′′1)+ · · ·+(−x′′k ) for some k and some
points x′1, . . . ,x

′′
k . But now for each i between 1 and k, let ci be the singular 1-simplex
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given by f : I → X with f (0) = x′′i and f (1) = x′i. Then ∂ci = x′1 − x′′1 so ∑i nixi =
∂ (∑k

j=1 c j) ∈ B0(X). ��
Lemma 5.2.2. Let f : I → X and g : I → X with f (1) = g(0). Define h : I → X by
h(t) = f (2t) for 0 ≤ t ≤ 1

2 , and h(t) = g(2t − 1) for 1
2 ≤ t ≤ 1. Then [ f + g− h] =

0 ∈ H1(X).

Proof. We exhibit a 2-cell C with ∂C = f + g − h. C : I → I → X is given by
following f and then g along each of the heavy solid lines as indicated:

g

f

f

f

f

f

f

f

g
g

g

g

g

g

Then ∂C = f +g−h−k, where k is the path on the left-hand side of the square. But
that is the constant path at f (0), and hence a degenerate 1-chain, so ∂C = f +g−h
in Z1(X). ��
Remark 5.2.3. Obviously this generalizes to the composition of any finite number
of paths (proof by induction). ♦
Theorem 5.2.4. Let X be a path-connected space. The map θ : π1(X ,x0)→ H1(X)
given by θ ( f ) = [ f ], where f : (S1,1)→ (X ,x0), is an epimorphism with kernel the
commutator subgroup of π1(X ,x0). Thus H1(X) is isomorphic to the abelianization
of π1(X ,x0).

Proof. There are several things to show:

(1) θ is a homomorphism: That follows immediately from Lemma 5.2.2.
(2) θ is surjective: Once and for all, for every point x ∈ X choose a path αx from x0

to x. We make this choice completely arbitrarily, except that we let αx0 be the
constant path at x0. Let βx be αx run backwards, βx from x to x0.

Let z = ∑i∈I aiT i represent an element of H1(X), T i : I1 → X . Let pi =
(T i)−1(0) and qi = (T i)−1(1). Then 0 = ∂ z = ∑i∈I ai(B1T − A1T ) so after
gathering terms the coefficient of every 0-simplex S j : I0 → X , j ∈ J, is zero.
Then ∑i∈I ai(αpi + T i + βqi) = ∑aiT i = z. Now for each i, αpi + T i + βqi is
homologous, again by Lemma 5.2.2, to the image of an element of π1(X ,x0),
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that element being obtained by beginning at x0, following αpi from x0 to pi,
then following T i from pi to qi, then following βqi from qi back to x0. (Observe
that this composite path is a loop at x0.)

(3) Ker(θ ) ⊇ G, the commutator subgroup of π1(X ,x0). Algebraically, that is
immediate, as Im(θ ) ⊆ H1(X), which is an abelian group. But geometrically
that is easy to see as well. It amounts to showing that if f1 and f2 are conjugate
elements of π1(X ,x0), then θ ( f2) = θ ( f1). But f1 and f2 conjugate simply
means f2 = g f1g−1 for some g ∈ π1(X ,x0), and then θ ( f2) = θ ( f1) again by
Lemma 5.2.2.

(4) Ker(θ ) ⊆ G. For a 1-cell T , let δ (T ) = αpT βq : I → X where p = T (0) and
q = T (1). Observe that if T is degenerate, δ (T ) represents 1 in π1(X ,x0).
For a 2-cell U , let �(U) = δ (A2U)δ (B1U)δ ((B2U)−1)δ ((A1U)−1) where the
inverse denotes that the path is traversed in the opposite direction.

U(A1U )−1

A2U

B1U

(B2U )−1

Note that �(U) is homotopic to αpβp, p = U(0,0), so �(U) represents 1 in
π1(X ,x0).

Now suppose θ ( f ) = 0 in H1(X). Then

θ ( f ) = ∂

(

∑
n∈K

akU
k

)

in C∗(X)

= ∂

(

∑
k∈K

akU
k

)

+ ∑
q∈Q

bqDq in Q∗(X)

where {Dq} are degenerate 1-cells,

= ∑ak(B1T k −A1T k +A2T k −B2T k)+∑bqDq.

In this sum, θ ( f ) appears with coefficient 1 and every other non-degenerate cell
appears with coefficient 0.
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Now, if [ ] denotes the homotopy class in π1(X ,x0),

∏
k

[�(Uk)]ak = 1, ∏
q
[δ (Dq)]

bq = 1,

so in π1(X ,x0)/G,

0 = ∑ak�(Uk)+∑bqδ (Dq)

= ∑ak(δ (B1Uk)− δ (A1U
k)+ δ (A2Uk)− δ (B2Uk))+∑

q
bqδ (Dq).

Applying δ to the expression for θ ( f ), and comparing it with the second
expression, we see that δ (θ ( f )) represents 0 in π1(X ,x0)/G. But δ (θ ( f )) =
αx0 f βx0 is homotopic rel {0,1} to f as αx0 is the constant path. Hence f = 0 in
π1(X ,x0)/G. ��
Corollary 5.2.5. Let X be a path-connected space. The map θ induces a bijection
(of sets)

{free homotopy classes of maps: S1 −→ X} −→ H1(X).

Proof. Immediate from Theorems 5.2.4 and 2.5.1. ��
Lemma 5.2.6. Let f : (X ,x0)→ (Y,y0). Then the following diagram commutes:

π1(X,x0)

π1(Y,y0)

f∗

θ
H1(X )

H1(Y ).

f∗

θ

Using the results of this section, and our work on covering spaces, we now
provide an alternate proof of Theorem 4.2.31.

Theorem 5.2.7. Let d be any integer. Then for any integer n ≥ 1, there exists a map
f : Sn → Sn of degree d.

Proof. Again the key step is the n = 1 case, and we provide an alternate proof of
that (with the remainder of the proof being the same as in the previous proof).

Again we claim that f : S1 → S1 by f (z) = zd has degree d.
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To prove that, we consider the diagram

π1(S 1,1)

π1(S 1,1)

H1(S 1)

H1(S 1).

f∗

θ

f∗

θ

The horizontal maps are all isomorphisms, as we have shown that π1(S1,1) ∼= Z

in Example 2.2.7. Thus we need only show that f∗ : π1(S1,1) → π1(S1,1) is
multiplication by d, and to show that it suffices to show that if γ is a generator of
π1(S1,1), then f∗(γ) = dγ . But we also showed that in Example 2.2.7. (The identity
map i : S1→S1 represents γ , and then the composition f ◦ i= f represents f∗(γ).) ��
Example 5.2.8. Here is a pair of examples to show that the condition closure(U)⊆
interior(A) cannot in general be relaxed to U ⊆ interior(A) for the inclusion
(X −U,A −U) → (X ,A) to be excisive. In each case we will have a closed
set A and we will let U = interior(A), so that we are considering the inclusion
(X-interior(A),∂A)→ (X ,A).

(a) Let X = R
2 and let A be the subset of R2 that is on or below the graph of the

function

f (x) =

⎧
⎨

⎩

sin
(1

x

)
x > 0

1 x ≤ 0.

Note that ∂A consists of the union of the graph of this function and the
interval {[0,y] | −1 ≤ y ≤ 1}. Observe that both X and X-interior(A) are
contractible, that A is path-connected, and that ∂A has two path components.

Then the exact sequence of the pair (X ,A) shows that H1(X ,A) = 0,
while the exact sequence of the pair (X-interior(A),∂A) shows that
H1(X-interior(A),∂A)∼= Z.

(b) Let X = K, the space of Example 2.6.2, and let A =K2, as in that example. Then
interior(A) = A− (0,0,0), and ∂A = {(0,0,0)}. Then (X-interior(A),∂A) =
(K1,{(0,0,0)}) and so H1(X-interior(A),∂A) = 0 as K1 is contractible and
{(0,0,0)} is a single point. On the other hand, H1(X ,A) = H1(K,K2) ∼= H1(K)
by the exact sequence of the pair, as K2 is contractible. By Corollary 5.2.5
H1(K) = {free homotopy classes of maps: S1 → K}. But this set is nonzero
(and in fact H1(K) is infinitely generated) with a nonzero element being the
loop described in Example 2.6.2. ♦
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5.3 Homology with Coefficients

Heretofore we have been considering singular homology with integral coefficients.
We now consider arbitrary coefficients. The development of the theory with arbitrary
coefficients involves a number of algebraic constructions but no new geometry.

Throughout this section we let G be an abelian group.

Definition 5.3.1. Let (X ,A) be a pair. Then

Qn(X ;G) = Qn(X)⊗G (and similarly for A)

Dn(X ;G) = Dn(X)⊗G (and similarly for A)

Cn(X ;G) = Qn(X ;G)/Dn(X ;G) (and similarly for A)

Cn(X ,A;G) =Cn(X ;G)/Cn(A;G). ♦
Here we regard the abelian group G as a Z-module, and ⊗G is an abbreviation

for ⊗ZG.
In concrete terms, we have for example, that q ∈ Qn(X ;G) is

q = ∑
i

giΦi

where gi ∈ G and Φi : In → X is a singular n-cube.

Lemma 5.3.2. Cn(X ;G) is isomorphic to Cn(X)⊗G (and similarly for A). Also,
Cn(X ,A;G) is isomorphic to Cn(X ,A)⊗G.

Proof. Clear from Definition 5.3.1 and the fact that for any two abelian groups A
and B, (A⊕B)⊗G ≈ (A⊗G)⊕ (B⊗G), and hence, in this situation, (A⊗G) ≈
((A⊕B)⊗G)/(B⊗G). ��
Lemma 5.3.3. With the above identifications, Cn(X ;G) is a chain complex with
boundary map ∂ ⊗ 1 : Cn(X ;G) → Cn−1(X ;G), and similarly for Cn(A;G) and
Cn(X ,A;G).

Proof. The only thing to check is that (∂ ⊗ 1)2 = 0. But (∂ ⊗ 1)2 = ∂ 2 ⊗ 1 = 0. ��
Lemma 5.3.4. There is a split short exact sequence

0 −→Cn(A;G)−→Cn(X ;G)−→Cn(X ,A;G)−→ 0,

and hence Cn(X ;G) is isomorphic to Cn(A;G)⊕Cn(X ,A;G).

Proof. We have the short exact sequence

0 −→Cn(A)−→Cn(X)−→Cn(X ,A)−→ 0.
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Tensoring such a sequence with G does not in general produce an exact sequence.
But if this sequence is split short exact, tensoring with G produces a split short exact
sequence. This is the case, by Lemma 5.1.26. ��
Lemma 5.3.5. With the identification in Lemma 5.3.2, f : X → Y induces f∗ ⊗ 1 :
C∗(X ;G)→C∗(Y ;G), and similarly for f : (X ,A)→ (Y,B).

In concrete terms, if {Φi : In → X} are singular n-cubes, ( f∗ ⊗ 1)(∑i giΦi) =

∑gi( f Φi).

Definition 5.3.6. The singular homology of X with coefficients in G is the homol-
ogy of the chain complex {C∗(X ;G)}. We denote the n-th homology group of this
chain complex by Hn(X ;G), and similarly for a pair (X ,A). ♦
Theorem 5.3.7. Singular homology with coefficients in G is an ordinary homology
theory with coefficient group G.

Proof. First we check Axiom 7, the dimension axiom. If X consists of a single point,
then C∗(X ;G) is isomorphic to

· · · −→ 0 −→ 0 −→ G −→ 0 −→ 0 −→ ·· ·

with homology as claimed.
The proof that this theory satisfies Axioms 1–3, 5, and 6 is identical to the

previous proof.
As for Axiom 4, once we have Lemma 5.3.4, that also follows as before. ��
We have previously denoted singular cohomology with integer coefficients by

H∗(X), and we will continue to use that notation, but we will sometimes also denote
it by H∗(X ;Z) when we wish to emphasize the coefficient group.

Our next goal is to see how to compute H∗(X ;G) from H∗(X ;Z).

Lemma 5.3.8. The map τ : Cn(X)→Cn(X ;G) given by τ(Φ) = Φ ⊗ 1 where Φ is
a singular n-cube induces a map

τ : Hn(X)⊗G −→ Hn(X ;G).

Proof. Lemma 5.3.3 implies that τ : Zn(X)→ Zn(X ;G) and τ : Bn(X)→ Bn(X ;G),
where, as usual, Zn(X) = Ker(∂n) and Bn(X) = Im(∂n+1), and also Zn(X ;G) =
Ker(∂n ⊗ 1) and Bn(X ;G) = Im(∂n+1 ⊗ 1). ��
Theorem 5.3.9 (Universal coefficient theorem). (1) For any space X and abelian
group G, there is a split short exact sequence

0 −→ Hn(X)⊗G
τ−→ Hn(X ;G)−→ Tor(Hn−1(X),G)−→ 0.
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(2) If f : X → Y is a map, there is a commutative diagram

0 Hn (X)⊗G Hn (X;G)

Hn (Y;G)Hn (Y )⊗G

0

0 Tor (Hn−1(Y ),G)

Tor (Hn−1 (X ),G)

0.

Proof. This is a purely algebraic fact about the homology of chain complexes, and
we omit the proof. ��
Remark 5.3.10. This (omitted) proof crucially uses the fact that the singular chain
complex of a space consists of free abelian groups. ♦
Remark 5.3.11. We have not completely defined Tor here. But we can draw several
consequences. First, we always have that the map Hn(X) ⊗ G → Hn(X ;G) is
an injection, and furthermore that Hn(X ;G) ≈ Hn(X)⊗G⊕ Tor(Hn−1(X),G). In
particular, if Hn−1(X) = 0, or, by Lemma A.3.8, if Hn−1(X) is free abelian, then
Hn(X ;G)≈ Hn(X)⊗G.

Thus, if X is a space with Hn(X) torsion-free for all n, then Hn(X ;G) ≈
Hn(X)⊗G for every n. Examples of these are spheres (by Lemma 4.1.3) or complex
projective spaces (by Theorem 4.3.3). ♦
Example 5.3.12. By Lemma A.3.8, Tor(Z2,Zm) ≈ Z2 for m even. Thus, from
Theorem 4.3.4, for real projective spaces we have, for m even,

Hi(RPn;Zm) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 i > n

Zm i = n odd

Z2 i = n even

Z2 1 ≤ i ≤ n− 1

Zm i = 0.

On the other hand, by Lemma A.3.8, Tor(Z2,Zm) = 0 for m odd. Thus for real
projective spaces we have, for m odd

Hi(RPn;Zm) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 i > n

Zm i = n odd

0 i = n even

0 1 ≤ i ≤ n− 1

Zm i = 0. ♦
Corollary 5.3.13. Let f : X → Y and suppose that f∗ : Hn(X) → Hn(Y ) is an
isomorphism for all n. Then f∗ : Hn(X ;G)→ Hn(Y ;G) is an isomorphism for all n.
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Proof. This follows directly from the universal coefficient theorem and the short
five lemma. ��
Remark 5.3.14. Once we have that Hn(X ;G) is a homology theory, we have all the
consequences that follow from the axioms, e.g., the Mayer-Vietoris sequence. We
also have the cellular homology with coefficients in G of a CW-complex, and again
it is isomorphic to singular homology with coefficients in G. ♦
Remark 5.3.15. If we tensor with a commutative ring R, instead of a group G,
then Cn(X ;R) has the structure of an R-module, and hence so does Hn(X ;R). An
important special case is that of a field F, whence Hn(X ;F) is an F-vector space. ♦

We can also ask what happens if we change coefficient groups, and the answer is
what we would expect.

Theorem 5.3.16. Let ϕ : G1 → G2 be a homomorphism. Then there is a commuta-
tive diagram of split short exact sequences, with all vertical maps induced by ϕ ,

0 0

0 0.Hn (X)⊗G2

Hn (X)⊗G1 Hn (X;G1)

Hn (X;G2) Tor (Hn−1 (X ),G2)

Tor (Hn−1 (X ),G2)

5.4 The Künneth Formula

Our goal in this section is to derive the Künneth formula, which expresses the
homology of a product X×Y in terms of the homology of each of the factors X and Y .

Definition 5.4.1. Let Φ : I j → X be a singular j-cube and Ψ : Ik → Y be a singular
k-cube. Then their cross product Φ ×Ψ : I j × Ik → X ×Y is the singular ( j+k)-cube
given by

(Φ ×Ψ)(x1, . . . ,x j,y1, . . . ,yk) = (Φ(x1, . . . ,x j),Ψ (y1, . . . ,yk)). ♦
Lemma 5.4.2. The cross product induces a map

Cj(X)⊗Ck(Y )−→Cj+k(X ×Y ).

Proof. If either Φ or Ψ is degenerate, so is Φ ×Ψ . ��
Lemma 5.4.3. In this situation,

∂ (Φ ×Ψ) = (∂Φ)×Ψ +(−1) jΦ × (∂Ψ).

Proof. Direct calculation, with careful attention to signs. ��
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By definition, the tensor product of the chain complex A = {Ai} and B = {B j}
is C = {Ck} where Ck =

⊕
i+ j=k Ai⊗B j. Thus, given this definition, we have a map

from C∗(X)⊗C∗(Y )→C∗(X ×Y).
We now cite the Eilenberg-Zilber theorem:

Theorem 5.4.4. The map

C∗(X)⊗C∗(Y )−→C∗(X ×Y)

induces an isomorphism on homology.

Once we have this theorem, we may use algebraic methods to compute the
homology of X ×Y from the homology of X and the homology of Y . But the first
thing to note is that the homology of C∗(X)⊗C∗(Y ) is not in general isomorphic to
H∗(X)⊗H∗(Y ), though they are closed related, as we shall now see.

Lemma 5.4.5. The cross product induces a map

Hj(X)⊗Hk(Y )−→ Hj+k(X ×Y ).

Proof. First we show that we obtain a map

Zj(X)⊗Zk(Y )−→ Zj+k(X ×Y ).

Let c ∈ Zj(X) and d ∈ Zk(Y ) be singular cycles, so that ∂c = 0 and ∂d = 0. Then

∂ (c× d) = (∂c)× d+(−1) jc× (∂d) = 0× d± c× 0= 0

so c× d ∈ Zj+k(X ,Y ).
Now suppose c ∈ B j(X), c= ∂e for some e ∈Cj+1(X). Then c×d = ∂ (e×d), so

c× d ∈ B j+k(X ×Y ). Similarly if d ∈ Bk(Y ), c× d ∈ B j+k(X ×Y ). Thus we obtain
a map

(Zj(X)/B j(X))⊗ (Zk(Y )/Bk(Y ))−→ Zj+k(X ×Y)/B j+k(X ×Y ),

i.e., a map

Hj(X)⊗Hk(Y )−→ Hj+k(X ×Y ). ��
We regard H∗(X) and H∗(Y ), and hence H∗(X)⊗H∗(Y ), as chain complexes with

identically zero boundary operator.
We then have
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Theorem 5.4.6 (Künneth formula). (1) For any spaces X and Y , there is a split
short exact sequence

0 −→ (H∗(X)⊗H∗(Y ))n −→ Hn(X ×Y )−→ (Tor(H∗(X),H∗(Y )))n−1 −→ 0.

(2) For any spaces X ,Y,Z,W, and maps f : X → Z, g : Y → W, there is a
commutative diagram

0 (H∗(X )⊗ H∗(Y ))n

(H∗(Z )⊗ H∗(Y ))n

0

0 0.Hn (Z×W )

Hn (X×Y ) (Tor (H∗(X ),H∗ (Y )))n−1

(Tor (H∗(Z ),H∗ (W )))n−1

In the statement of this theorem,

(H∗(X)⊗H∗(Y ))n =
n⊕

j=0

Hj(Y )⊗Hn− j(Y ),

(Tor(H∗(X),H∗(Y )))n−1 =
n−1⊕

j=0

Tor(Hj(Y ),Hn−1− j(Y )).

Proof. This is a purely algebraic result, whose proof we omit, but we again remark
that it crucially uses the fact that C∗(X) and C∗(Y ) are chain complexes of free
abelian groups. ��
Corollary 5.4.7. Let F be a field. Then for any spaces X and Y , the map

(H∗(X ;F)⊗H∗(Y ;F))n −→ Hn(X ×Y ;F)

is an isomorphism.

Recall that for a path connected space Y , we have a canonical choice of 1 ∈
H0(Y ). For clarity we shall denote this element by 1Y . Let us identify Hn(X)⊗H0(Y )
with a subgroup of Hn(X ×Y ) via the inclusion in the Künneth formula.

Lemma 5.4.8. Let Y be a path connected space and let π : X ×Y →X be projection
on the first factor. For any element α of Hn(X),

π∗(α ⊗ 1Y ) = α.

Proof. Clear from the construction in Lemma 5.4.5. ��
We have stated the Künneth formula for spaces. A similar formula holds for pairs,

where by definition
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(X ,A)× (Y,B) = (X ×Y,X ×B∪Y ×A).

The proof is very much along the same lines, and again we must apply a form of
the Eilenberg-Zilber theorem for pairs. But in this situation this theorem requires a
slight additional hypothesis.

Theorem 5.4.9. Suppose that {X ×B,A×Y} is an excisive couple. Then the map

C∗(X ,A)⊗C∗(Y,B)−→C∗((X ,A)× (Y,B))

induces an isomorphism on homology.

This yields the Künneth formula under the same additional hypothesis.

Theorem 5.4.10 (Künneth formula). (1) For any pairs (X ,A) and (Y,B) with
{X ×B,A×Y} an excisive couple in X ×Y, there is a split short exact sequence

0 −→ (H∗(X ,A)⊗H∗(Y,B))n −→ Hn((X ,A)× (Y,B))

−→ (Tor(H∗(X ,A),H∗(Y,B)))n−1 −→ 0.

(2) For any pairs (X ,A) and (Y,B) with {X ×B,A×Y} an excisive couple in X ×Y,
and any pairs (Z,C) and (W,D) with {Z ×D,C ×W} an excisive couple in
Z×W, and any maps of pairs f : (X ,A)→ (Z,C) and g : (Y,B)→ (W,D), there
is a commutative diagram

0 (H∗(X,A)⊗H∗(Y,B))n (Tor(H∗(X,A),H∗(Y,B)))n−1

(Tor(H∗(Z,C),H∗(W,D)))n−1(H∗(Z,C)⊗H∗(W,D))n Hn((Z,C ) × (W,D))

Hn((X,A ) × (Y,B)) 0

0 0.

Corollary 5.4.11. Let F be a field. Then for any pairs (X ,A) and (Y,B) such that
{X ×B,A×Y} is an excisive couple, the map

(H∗(X ,A;F)⊗H∗(Y,B;F))n −→ Hn((X ,A)× (Y,B);F)

is an isomorphism.

5.5 Cohomology

In this section we develop singular cohomology. Given our previous work, this is
almost entirely algebraic. Then we extend it and relate it to other things we have
done.
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Definition 5.5.1. The singular cohomology (with integer coefficients) H∗(X ,A) is
the homology of the dual cochain complex of the integral singular chain complex
C∗(X ,A). ♦

We now elaborate on this definition.
Given the singular chain complex C∗(X), we form the dual cochain complex

C∗(X) given by

Cn(X) = Hom(Cn(X),Z)

with coboundary operator δ n : Cn(X)→Cn+1(X) given by

δ n(γ)(c) = γ(∂n+1c)

where γ ∈ Cn(X) and c ∈ Cn+1(X). The relation ∂n−1∂n = 0 immediately yields
δ nδ n−1 = 0 as well.

Definition 5.5.2. The group of singular n-cocycles Zn(X) and the group of singular
n-coboundaries Bn(X) are defined by:

Zn(X) = Ker(δ n : Cn(X)−→Cn+1(X))

Bn(X) = Im(δ n−1 : Cn−1(X)−→Cn(X)).

The n-th singular cohomology group of X is defined by

Hn(X) = Zn(X)/Bn(X). ♦
Let f : X →Y be a map of spaces. Then f induces a map f ∗ : C∗(Y )→C∗(X) by

f ∗(γ)(c) = γ( f (c))

where γ ∈Cn(Y ) and c ∈Cn(X).

Lemma 5.5.3. The map f ∗ : C∗(Y )→C∗(X) induces a map f ∗ : H∗(Y )→ H∗(X).

Proof. It is routine to check that f ∗(Zn(Y ))⊆ Zn(X) and f ∗(Bn(Y ))⊆ Bn(X). ��
Theorem 5.5.4. Singular cohomology is an ordinary cohomology theory with Z

coefficients.

Proof. This proof entirely mimics the proof that singular homology is an ordinary
homology theory with Z coefficients. ��

There is just one subtlety, Axiom 4, the exactness axiom. Exactness for homology
followed from the short exactness of the sequence of singular chain complexes

0 −→C∗(A)−→C∗(X)−→C∗(X ,A)−→ 0,
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i.e., the exactness of

0 −→Cn(A)−→Cn(X)−→Cn(X ,A)−→ 0.

In general, however, if 0 → A → B → C → 0 is a sequence of Z-modules, 0 →
C∗ → B∗ → A∗ → 0 is not exact (where A∗, B∗, and C∗ are the duals of A, B, and C
respectively).

However, if 0 → A → B →C → 0 is split exact then 0 → C∗ → B∗ → A∗ → 0 is
exact, and in fact split exact.

But that is the situation we are in here. The sequence

0 −→C∗(A)−→C∗(X)−→C∗(X ,A)−→ 0

is split exact by Lemma 5.1.26.
There is also one useful trick. We have not given the proof of axiom 5, the

excision axiom, for homology, due to its length. One can prove excision for
cohomology along the same lines as the proof for homology. But instead, using
Corollary 5.5.13 below, we can calculate that excision for homology immediately
implies excision for cohomology.

Remark 5.5.5. In the construction of cohomology, there is one algebraic subtlety we
need to note. Let M be a free abelian group of finite rank. Then M∗ = Hom(M,Z)
is a free abelian group of the same rank. But when we leave the finite rank case we
run into problems. For example, if M is a free abelian group of countably infinite
rank, then M∗ is an uncountable torsion-free abelian group that is not free. (This is
a theorem of Baer.)

The infinite rank case is precisely the situation we are in here, as if X is any space
other than a finite set of points, then the singular chain complex C∗(X) is infinitely
generated. To deal with this situation we will have to impose various finiteness
assumptions in several places below. ♦

Having obtained singular cohomology with integer coefficients, we may then
obtain singular cohomology with coefficient group G in exactly the same way we
obtained singular homology with coefficient group G.

Definition 5.5.6. Let G be an abelian group. The singular cohomology of X with
coefficients G, H∗(X ;G), is the homology of C∗(X)⊗G, where C∗(X) is the dual
chain complex to the singular chain complex of X . ♦
Theorem 5.5.7. Singular cohomology with coefficients in G is an ordinary coho-
mology theory with coefficient group G = H0(X ;G).

Proof. Again this mirrors the proof for singular homology in Sect. 5.1. Again
Axiom 4 uses the fact that, for every n, the sequence 0 → Cn(X ,A) → Cn(X) →
Cn(A)→ 0 is split exact. ��

Again we have a universal coefficient theorem for cohomology. Because of the
problem with infinite ranks, we need additional hypotheses.
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Theorem 5.5.8 (Universal coefficient theorem). (1) Let X be a space and let G
be an abelian group. Suppose that X is of finite type or that G is of finitely generated.
Then there is a split short exact sequence

0 −→ Hn(X)⊗G −→ Hn(X ;G)−→ Tor(Hn+1(X),G)−→ 0.

(2) In this situation, if f : X → Y is a map, there is a commutative diagram

0 H n(Y )⊗G

H n(X )⊗G

H n(Y ;G)

H n(X ;G)

Tor (H n+1(Y ),G)

Tor (H n+1(X ),G)

0

0 0.

Proof. Again we omit the purely algebraic argument, but we note that, while the
cochain groups C∗(X) are not in general free, they are torsion-free, and that fact,
together with our additional hypotheses, suffices to be able to apply that argument.

��
We have the following corollary (compare Corollary 5.3.13).

Corollary 5.5.9. In the situation of Theorem 5.5.8, let f : X → Y and suppose that
f ∗ : Hn(Y )→ Hn(X) is an isomorphism for all n. Then f ∗ : Hn(Y ;G)→ Hn(X ;G)
is an isomorphism for all n.

We also have the analog of Theorem 5.3.16.

Theorem 5.5.10. In the situation of Theorem 5.5.8, let ϕ : G1 → G2 be a homomor-
phism. Then there is a commutative diagram of split short exact sequences, with all
vertical maps induced by ϕ ,

H n(X )⊗G1

H n(X )⊗G2

H n(X ;G1)

H n(X ;G2)

Tor (H n+1(X ),G1)

Tor (H n+1(X ),G2)

0 0

0 0.

It is natural to expect that there will be a close relationship between homology
and cohomology, and that is indeed the case. We develop that now.

Given the definition of the dual chain complex, we have the evaluation map

e : Cn(X)⊗Cn(X)−→ Z
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given by evaluating a cochain on a chain, i.e.

e(γ,c) = γ(c) for γ ∈Cn(X), c ∈Cn(X).

Lemma 5.5.11. The evaluation map e induces a map

e : Hn(X)⊗Hn(X)−→ Z

by e([γ], [c]) = γ(c), where γ (resp. c) is a representative of the cohomology class
[γ] (resp. the homology class [c]).

Proof. We can restrict e to evaluate cocycles on cycles,

e : Zn(X)⊗Zn(X)−→ Z

by e(γ,c) = γ(c). But then if c is a boundary, c= ∂d, e(γ,c) = e(γ,∂d) = e(δγ,d) =
e(0,d) = 0, and similarly if γ is a coboundary. ��

Given this lemma, we have a map

e : Hn(X)−→ Hom(Hn(X),Z)

given by

e([γ])([c]) = e([γ], [c]) = γ(c),

i.e., f = e([γ]) is the homomorphism f : Hn(X)→ Z given by f ([c]) = γ(c).
This construction can be performed with arbitrary coefficients, to obtain maps

e : Hn(X ;G)⊗Hn(X)−→ G

and

e : Hn(X ,G)−→ Hom(Hn(X),G).

Theorem 5.5.12 (Universal coefficient theorem). (1) For any space X and
abelian group G, there is a split short exact sequence

0 −→ Ext(Hn−1(X),G)−→ Hn(X ;G)
e−−→ Hom(Hn(X),G)−→ 0.

(2) If f : X → Y is a map, there is a commutative diagram
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0 Ext (Hn−1(Y ),G) Hom (Hn (Y ),G)

Hom (Hn (X ),G)Ext (Hn−1(X ),G)

0

0 0.

H n(Y ;G)

H n(X ;G)

Proof. Again this is a purely algebraic argument which we omit. ��
Note that this theorem has important consequences even (indeed, especially) in

the case G = Z.

Corollary 5.5.13. Let f : X → Y induce an isomorphism f∗ : Hn(X)→ Hn(Y ) for
all n. Then f ∗ : Hn(Y )→ Hn(X) is an isomorphism for all n.

Corollary 5.5.14. If the inclusion (X −U,A−U)→ (X ,A) is excisive for singular
homology, it is excisive for singular cohomology.

Corollary 5.5.15. Let X be a space of finite type and suppose that Hn(X)≈ Fn⊕Tn,
where Fn is a free abelian group and Tn is a torsion group, for each n. Then

Hn(X)≈ Fn ⊕Tn−1

for each n.

Proof. This follows from the computation of Ext in Lemma A.3.12. ��
Corollary 5.5.16. Let X be a space of finite type. Then Hn(X) is finitely generated
for all n.

Example 5.5.17. The integral singular cohomology of RPn is as follows:

Hk(RPn) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 k > n

Z k = n odd

0 k = n even

Z2 1 ≤ k ≤ n− 1 even

0 1 ≤ k ≤ n− 1 odd

Z k = 0,

as we see from Corollary 5.5.15 and Theorem 4.3.4. ♦
Remark 5.5.18. We may take Hom( ,R) where R is a commutative ring, and then
Hn(X ;R) becomes an R-module. In particular we may take R = F, a field. We then
see that Hn(X ;F) and Hn(X ;F) are F-vector spaces, and either they are both
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finite-dimensional vector spaces or they are both infinite-dimensional vector spaces.
In case they are both finite-dimensional, then they are dual vector spaces with the
pairing

e : Hn(X ;F)⊗Hn(X ;F)−→ F

being nonsingular.
(In particular, Hn(X ;F) and Hn(X ;F) are F-vector spaces of the same

dimension.) ♦
We have Theorem 5.5.12, which tells us how to pass from homology to

cohomology, and now we have a theorem which tells us how to pass back (under
favorable circumstances).

Theorem 5.5.19 (Universal coefficient theorem). (1) Let X be a space of finite
type. For any abelian group G there is a split short exact sequence

0 −→ Ext(Hn+1(X),G)−→ Hn(X ;G)
e−−→ Hom(Hn(X),G)−→ 0.

(2) If f : X → Y is a map, where both X and Y are spaces of finite type, there is a
commutative diagram

0 0

0 0.

Ext (H n+1(X ),G)

Ext (H n+1(Y ),G) Hn(Y ,G)

Hn(X ;G)

Hom (H n (Y ),G)

Hom (H n (X ),G)

Proof. Again we omit this purely algebraic proof. ��
(The reader has undoubtedly observed by now that we have several theorems

called the universal coefficient theorem. This reflects the fact that all these theorems
have this name in the literature.)

Recall we defined the Euler characteristic χ(X) of a space X with finitely
generated homology in Definition 4.2.19. We observe:

Theorem 5.5.20. Let X be a space with finitely generated homology. Let F be an
arbitrary field. Then χ(X) is given by
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χ(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞

∑
n=0

(−1)n rank Hn(X ;Z)

∞

∑
n=0

(−1)n rank Hn(X ;Z)

∞

∑
n=0

(−1)n dimHn(X ;F)

∞

∑
n=0

(−1)n dimHn(X ;F).

Proof. This follows directly from the universal coefficient theorems. (If F is a field
of characteristic zero, then all of these ranks are equal for every integer n. If F does
not have characteristic 0, that may not be the case, depending on the space X , but
nevertheless the alternating sums have the same value.) ��
Remark 5.5.21. Recall that we chose a canonical identification of H0(∗;Z) with Z,
with 1∗ ∈ H0(∗ : Z) being identified with 1 ∈ Z.

This gives a canonical identification of H0(∗;Z) with Z as well: The class 1∗ ∈
H0(∗;Z) is the class that evaluates to 1 on 1∗ ∈ H0(∗;Z) under the evaluation map
of Lemma 5.5.11, i.e., we have the equation e(1∗,1∗) = 1.

Now let X be an arbitrary nonempty space. Then we have the (unique) map ε :
X →∗ and hence we have the identical maps ε∗ on homology and ε∗ on cohomology.
Under the above identifications, we may regard ε∗ : H0(X ;Z) → Z and ε∗ : Z →
H0(X ;Z). In particular we let 1X ∈ H0(X ;Z) be ε∗(1∗).

(In case X is path connected, we have the class 1X ∈ H0(X ;Z) which is the image
of 1∗ under an arbitrary map ∗→ X , and then we again have ε(1X ,1X) = 1.)

We have stated this for Z coefficients for simplicity but this gives 1X ∈ H0(X)
for arbitrary coefficients by the universal coefficient theorem.

(We will sometimes abbreviate 1X to 1, or 1X to 1, when there is no possibility
of confusion.) ♦

Finally, we have a Künneth formula for cohomology as well as for homology.
Again we need finiteness assumptions.

Theorem 5.5.22 (Künneth formula).

(1) Let X and Y be spaces of finite type. There is a split short exact sequence

0−→(H∗(X)⊗H∗(Y ))n−→ Hn(X ×Y )−→(Tor(H∗(X),H∗(Y )))n+1−→0.

(2) For any spaces X, Y , Z, W and maps f : X → Z, g : Y → W, there is a
commutative diagram
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0 0

0 0.(H ∗(X )⊗H ∗(Y ))n

(H ∗(Z )⊗H ∗(W ))n H n (Z×W )

H n (X×Y ) (Tor (H ∗(X ) ,H ∗ (Y )))n+1

(Tor (H ∗(Z ) ,H ∗ (W )))n+1

In the statement of this theorem,

(H∗(X)⊗H∗(Y ))n =
n⊕

j=0

H j(X)⊗Hn− j(Y ),

(Tor(H∗(X),H∗(Y )))n+1 =
n+1⊕

j=0

Tor(H j(X),Hn+1− j(Y )).

We identify Hn(X)⊗H0(Y ) with a subgroup of Hn(X ×Y ) by the inclusion in
the Künneth formula. We then have the analog in cohomology of Lemma 5.4.8.

Lemma 5.5.23. Let π : X ×Y →X be projection on the first factor. For any element
α of Hn(X),

π∗(α) = α ⊗ 1Y .

We also have another corollary of the universal coefficient theorem.

Corollary 5.5.24. Let F be a field. Then for any spaces X and Y of finite type,

(H∗(X ;F)⊗H∗(Y ;F))n −→ Hn(X ×Y ;F)

is an isomorphism.

Remark 5.5.25. In exactly the same way that Theorem 5.4.9 generalizes
Theorem 5.4.4, and under the exact same additional hypothesis, the Künneth
formula for the cohomology of a product of spaces generalizes to the Künneth
formula for a product of pairs. ♦

5.6 Cup and Cap Products

In this section we fix a commutative ring R and an R-algebra M, and assume all of
our homology and cohomology groups have coefficients in M. The most important
special case is where R = Z and M is a Z-algebra, i.e., a commutative ring. Of
course, this includes the case when M is a field. We suppress the coefficients from
our notation.
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Our goal in this section is to define the cup product

∪ : H j(X)⊗Hk(X)−→ H j+k(X)

and the closely related cap product

∩ : H j(X)⊗Hj+k(X)−→ Hk(X).

As we shall see, the cup product gives the cohomology of a space X an algebra
structure, or, more precisely, the structure of a commutative graded algebra. It is this
extra structure that makes cohomology more powerful than homology.

We begin by revisiting our work from Sect. 5.4, where we defined the cross
product in homology. Given one crucial step, a more precise formulation of the
Eilenberg-Zilber theorem, we can define the cross product in cohomology in almost
exactly the same way. It is then easy to obtain the cup product from the cross product
in cohomology, using the contravariance of cohomology. We obtain the cup product
by first defining the slant product and then using the covariance of homology.

Again, for simplicity, we will begin by developing the theory for spaces, and then
we will state the analogous results for pairs.

We remind the reader of the definition of cross product on chains,
Definition 5.4.1, and of Lemmas 5.4.2 and 5.4.5.

We then have the precise version of the Eilenberg-Zilber theorem, Theorem 5.4.4.

Theorem 5.6.1. There are natural maps of chain complexes

E : C∗(X)⊗C∗(Y )−→C∗(X ×Y)

and

F : C∗(X ×Y )−→C∗(X)⊗C∗(Y )

that are inverse chain equivalences, i.e., that are chain maps that induce inverse
isomorphisms on homology

E∗ : H∗(C∗(X)⊗C∗(Y ))−→ H∗(C∗(X ×Y)),

F∗ : H∗(C∗(X ×Y ))−→ H∗(C∗(X)⊗C∗(Y )).

Here E is the map of Lemma 5.4.2, and we do not define F . With this more
precise definition the cross product on chains

× : Cj(X)⊗Ck(Y )−→Cj+k(X ×Y)

is the map given by

(Φ,Ψ ) �−→ E(Φ ×Ψ).
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Now consider a singular cochain. It is an element of the dual of the space of
singular chains, so it is determined by its values on singular chains, and indeed by
its values on a basis of the group of singular chains. Now, given

f ∈C j(X) and g ∈Ck(X)

and

Φ ∈Cj(X) and Ψ ∈Ck(X)

we have the evaluation map

( f ,g)(Φ,Ψ ) = f (Φ)g(Ψ ).

(Note in taking this product we are using the hypothesis that our coefficients are in
an algebra.)

It is immediate that this evaluation map is bilinear, giving a map

(C j(X)⊗Ck(Y ))⊗ (Cj(X)⊗Ck(Y ))−→ M.

Recall that Cj(X)⊗Ck(Y ) is one summand in

(C∗(X)⊗C∗(Y )) j+k =
⊕

p+q= j+k

Cp(X)⊗Cq(Y )

and we extend this map to

× : (C j(X)⊗Ck(Y ))⊗ (C∗(X)⊗C∗(Y )) j+k −→ M

by requiring that it be identically zero on the other summands.
This is almost what we need, and the missing link is provided by the other

Eilenberg-Zilber map.

Definition 5.6.2. The cross product on cochains

× : C j(X)⊗Ck(Y )−→C j+k(X ×Y)

is the map given by

f ⊗ g �−→ ( f × g)(F),

i.e., if c ∈Cj+k(X ×Y) is a chain, and F(c) = ∑miΦi ⊗Ψi, then

( f × g)(c) = ∑mi f (Φi)g(Ψi). ♦
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Lemma 5.6.3. In this situation,

δ ( f × g) = (δ f )× g+(−1) j f × (δg).

Proof. Entirely analogous to the proof of Lemma 5.4.3. ��
Lemma 5.6.4. The cross product induces a map

× : H j(X)⊗Hk(Y )−→ H j+k(X ×Y ).

Proof. Entirely analogous to the proof of Lemma 5.4.5. ��
We record several properties of both cross products. First we have naturality.

Theorem 5.6.5. Let α : X1 → X2 and β : Y1 → Y2 be maps. Then there are
commutative diagrams

Hj(X1)⊗Hk(Y1)

Hj(X2)⊗Hk(Y2)

α∗⊗β∗

Hj+k (X1×Y1)

Hj+k (X2×Y2)

(α×β)∗

and

H j(X2)⊗H k (Y2)

H j(X1)⊗H k (Y1)

α∗⊗β ∗

Hj+k (X2×Y2)

Hj+k (X1×Y1)

(α×β)∗

where in all cases the horizontal maps are cross products.

Proof. This follows directly from the covariance/contravariance of the maps on
homology/cohomology and the naturality of the Eilenberg-Zilber maps. ��

Next we have some algebraic properties.

Theorem 5.6.6. (1) The cross product on both homology and cohomology is
bilinear, i.e., u×(c1v1+c2v2) = c1(u×v1)+c2(u×v2) and (c1u1+c2u2)×v=
c1(u1 × v)+ c2(u2 × v) as (co)homology classes in H∗(X ×Y ) or H∗(X ×Y ).

(2) The cross product is associative, i.e., u×(v×w)=(u× v)×w as (co)homology
classes in H∗(X ×Y ×Z) or H∗(X ×Y ×Z).

(3) Let t : X ×Y → Y ×X by t(x,y) = (y,z). Let u ∈ Hj(X) and v ∈ Hk(Y ). Then
t∗(u× v) = (−1) jk(v× u). Similarly, if u ∈ H j(X) and v ∈ Hk(Y ), then t∗(u×
v) = (−1) jk(v× u).
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Closely related to the cross product is the slant product. We have already seen
that the map

C j(X)⊗Cj(X)−→ R

given by evaluation of cochains on chains,

f ⊗Φ �−→ f (Φ)

gives a map on homology/cohomology

H j(X)⊗Hj(X)−→ R.

(This is the evaluation map of Lemma 5.5.11 that gives the map H j(X) →
Hom(Hj(X),R) in the universal coefficient theorem, Theorem 5.5.19.)

Instead we consider the map

C j(X)⊗ (Cj(X)⊗Ck(Y ))−→Ck(Y )

given by

f ⊗ (Φ ⊗Ψ) �−→ f (Φ)Ψ .

We can easily extend this to a map

C j(X)⊗ (C∗(X)⊗C∗(Y )) j+k −→Ck(Y )

by requiring

f ⊗ (Φ ⊗Ψ) �−→ 0

if Φ ∈Cp(X), Ψ ∈Cq(Y ), for p �= j, q �= k.
Again we have the Eilenberg-Zilber map

F : C∗(X ×Y )−→C∗(X)⊗C∗(Y )

and taking the composite gives us the slant product

\ : C j(X)⊗Cj+k(X ×Y )−→Ck(Y ).

Lemma 5.6.7. The slant product induces a map

\ : H j(X)⊗Hj+k(X ×Y)−→ Hk(Y ).
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The naturality of the slant product is more complicated to state, because of the
mixed variance.

Theorem 5.6.8. Let α : X1 → X2 and β : Y1 → Y2 be maps. Let u ∈ H j(X2) and
v ∈ Hj+k(X1 ×Y1). Then

β∗(α∗(u)\v) = u\(α ×β )∗(v) ∈ Hk(Y2).

Bilinearity, on the other hand, is much the same.

Theorem 5.6.9. The slant product is bilinear, i.e., (c1u1 + c2u2)\v = c1(u1\v)+
c2(u2\v) and u\(c1v1 + c2v2) = c1(u\v1)+ c2(u\v2) as homology classes in Y .

It is now easy to define the cup product and the cap product.

Definition 5.6.10. The cup product

∪ : H j(X)⊗Hk(X)−→ H j+k(X)

is the map defined as follows: For x ∈ H j(X) and y ∈ Hk(X),

x∪ y =�∗(x× y)

where x× y is the cross product of x and y, an element of H j+k(X ×X), and �∗ :
H j+k(X ×X)→ H j+k(X) is the map induced on cohomology by the diagonal map

� : X −→ X ×X

given by �(p) = (p, p). ♦
Definition 5.6.11. The cap product

∩ : H j(X)⊗Hj+k(X)−→ Hk(X)

is the map defined as follows: For x ∈ H j(X) and y ∈ Hj+k(X),

x∩ y = x\�∗(y)

where �∗ : Hj+k(X) → Hj+k(X × X) is the map induced on homology by the
diagonal map �. ♦

We have defined the cup and cap products from the cross and slant products. But
in fact we can recover cross and slant products from a knowledge of cup and cap
products.

Lemma 5.6.12. Let π1 : X ×Y → X and π2 : X ×Y → Y be projection on the first
and second factors respectively.
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(1) Let α ∈ H j(X) and β ∈ Hk(Y ). Then

α ×β = π1
∗(α)∪π2

∗(β ) = (α × 1Y )∪ (1X ×β ).

(2) Let α ∈ H j(X) and β ∈ Hj+k(Y ). Then

α\β = π1∗(π2
∗(α)∩β ).

Proof. We prove the first of these. The last equality is just Lemma 5.5.23. To prove
the first, let � : X ×Y → (X ×Y )× (X ×Y) be the diagonal. Then, by definition,

π1
∗(α)∪π2

∗(β ) =�∗(π1
∗(α)×π2

∗(β ))

=�∗(π1
∗ ×π2

∗)(α ×β )

= ((π1 ×π2)�)∗(α ×β )

= α ×β

as (π1 ×π2)� is the identity map. ��
We now summarize some properties of cup and cap products. These follow fairly

directly from our previous work and from the properties of cross and slant products.

Theorem 5.6.13. (1) The cup product is associative.
(2) Cup and cap products are bilinear with respect to addition of cohomology and

homology classes.
(3) If α ∈ H j(X) and β ∈ Hk(X),

β ∪α = (−1) jkα ∪β .

(4) For any α ∈ Hk(X), 1X ∪α = α , and for any γ ∈ Hj+k(X), 1X ∩ γ = γ .
(5) For any α ∈ H j(X), β ∈ Hk(X), and γ ∈ Hl(X),

α ∩ (β ∩ γ) = (α ∪β )∩ γ.

(6) For any α ∈ H j(X) and γ ∈ Hj(X),

ε∗(α ∩ γ) = e(α,γ).

(7) For any α ∈ H j(X), β ∈ Hk(X), and γ ∈ Hj+k(X),

e(α,β ∩ γ) = e(α ∪β ,γ).

(8) Let f : X → Y . For any ζ ∈ H j(Y ) and α ∈ Hj+k(X),

f∗( f ∗(ζ )∩α) = ζ ∩ f∗(α) ∈ Hk(Y ).
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We also record the following more complicated relationship between cup, cap,
and cross products, which includes Lemma 5.6.12(1) as a very special case.

Theorem 5.6.14. (1) Let α ∈ H j(X), β ∈ Hk(X), γ ∈ Hl(Y ), and δ ∈ Hm(Y ).
Then, if n = j+ k+ l+m,

(α ∪β )× (γ ∩δ ) = (−1)kl(α × γ)∪ (β × δ ) ∈ Hn(X ×Y).

(2) Let α ∈ H j(X), β ∈ Hj+k(X), γ ∈ Hl(Y ), and δ ∈ Hl+m(Y ). Then, if n = k+m,

(α ∩β )× (γ ∩δ ) = (−1)( j+k)l(α × γ)∩ (β × δ ) ∈ Hn(X ×Y).

This follows from the previous properties we have obtained with enough careful
attention to detail (including signs). Note in (2) that the first and third cross products
are in homology and the second is in cohomology.

Many of the properties of the cup and cap product that we have stated can be
subsumed under the following theorem. (See Definition A.1.13 for the definition of
a graded algebra and module.)

Theorem 5.6.15. (1) For any nonempty space X, S =
⊕

i Hi(X) is a graded
commutative R-algebra and N =

⊕
i Hi(X) is a left S -module.

(2) Let X and Y be nonempty spaces and let f : X →Y be a map. Let T =
⊕

i Hi(X)
and S =

⊕
i Hi(Y ). Then f ∗ : S → T is an R-algebra homomorphism.

Corollary 5.6.16. If X and Y are homotopy equivalent, then
⊕

i Hi(X) and
⊕

i Hi(Y ) are isomorphic as graded R-algebras.

We now consider homology and cohomology of pairs. Again we can define cup
and cap products (through with some mild restrictions) and the results we obtain are
almost the same.

Theorem 5.6.17. Let X be a space and let C and D be subspaces of X. Assume that
{X ×C,D×X} and {C,D} are both excisive couples. Then there is a cup product

∪ : H j(X ,C)⊗Hk(X ,D)−→ H j+k(X ,C∪D)

and a cap product

∩ : H j(X ,C)⊗Hj+k(X ,C∪D)−→ Hk(X ,D).

Proof. The condition that {X ×C,D×X} be excisive is necessary in order to apply
the Eilenberg-Zilber theorem, and the condition that {C,D} be excisive is necessary
to obtain the analog of Lemma 5.6.12. Otherwise, the constructions are entirely
analogous (though more complicated). ��
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The following particulary useful special cases of this theorem are worth point-
ing out.

Corollary 5.6.18. Let (X ,A) be a pair. In part (1), assume that {X ×A,A×X} is
an excisive couple.

(1) There is a cup product

∪ : H j(X ,A)⊗Hk(X ,A)−→ H j+k(X ,A)

and a cap product

∩ : H j(X ,A)⊗Hj+k(X ,A)−→ Hk(X ,A).

(2) There is a cup product

∪ : H j(X)⊗Hk(X ,A)−→ H j+k(X ,A)

and a cap product

∩ : H j(X)⊗Hj+k(X ,A)−→ Hk(X ,A).

(3) There is a cup product

∪ : H j(X ,A)⊗Hk(X)−→ H j+k(X ,A)

and a cap product

∩ : H j(X ,A)⊗Hj+k(X ,A)−→ Hk(X).

Proof. (1) This is the special case C = D = A of Theorem 5.6.17.
(2) This is the special case C = A, D = /0 of Theorem 5.6.17.
(3) This is the special case C = /0, D = A of Theorem 5.6.17.

In (1), we need the hypothesis that {X×A,A×X} is excisive. But in these special
cases, all the other excisiveness hypotheses are automatic. ��
Remark 5.6.19. Note that if A is nonempty then

⊕
i Hi(X ,A) is a graded commuta-

tive ring without 1. For example, if X is a path connected space and A is a nonempty
subspaces of X , then H0(X ,A) = {0}. ♦

Otherwise the analogous statements all hold and we will not bother to explicitly
formulate them.



5.7 Some Applications of the Cup Product 89

5.7 Some Applications of the Cup Product

In this section we give several applications of the cup product. We begin by
considering a pair of spaces that have the same (co)homology groups, and show they
have different cohomology ring structures, so they cannot be homotopy equivalent.
Then we compute the ring structure on the cohomology of RPn and CPn, and use
the result for RPn to derive the Borsuk-Ulam theorem.

Example 5.7.1. We take Z coefficients. Let p,q ≥ 1. Then H p(Sp) ∼= Z and we
choose a generator α . Also, Hq(Sq)∼=Z and we choose a generator β . Now consider
H∗(Sp × Sq). It is given, in case p �= q, by

Hn(Sp × Sq) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z n = p+ q

Z n = p,q

Z n = 0

0 otherwise

and in case p = q by

Hn(Sp × Sq) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Z n = p+ q

Z⊕Z n = p = q

Z n = 0

0 otherwise.

If π1 : Sp ×Sq → Sp is projection on the first factor and π2 : Sp ×Sq → Sq is pro-
jection on the second factor, then, by Lemma 5.5.23, in case p �= q, H p(Sp × Sq) is
generated by α̃ = π1

∗(α)⊗1 and Hq(Sp×Sq) is generated by β̃ = 1⊗π2
∗(β ), while

in case p= q, H p(Sp×Sq) is generated by the two classes α̃ and β̃ . In either case, by
the Künneth formula, we have an isomorphism H p(Sp)⊗Hq(Sq)→ H p+q(Sp ×Sq)
which is given by the cross-product. Thus H p+q(Sp×Sq) is generated by γ̃ = α ×β .
But by Lemma 5.6.12 this gives

γ̃ = α̃ ∪ β̃ . ♦
Example 5.7.2. Again we take Z coefficients. Let p,q ≥ 1. Let Y = Sp ∨Sq ∨Sp+q,
i.e., the union of Sp, Sq, and Sp+q with all three spaces identified at one point.

Let Z = Sp ∨ Sq ⊂ Y and note that we have a retraction f : Y → Z given
by collapsing Sp+q to the identification point. Then f ∗ : Hn(Z) → Hn(Y ) is an
isomorphism for n = p,q. Let α be a generator of H p(Sp) and β be a generator
of Hq(Sq). Let α̃ = f ∗(α) and β̃ = f ∗(β ). Note that α ∪β = 0 as α ∪β ∈ H p+q(Z)
= {0}. But then

α̃ ∪ β̃ = f ∗(α)∪ f ∗(β ) = f ∗(α ∪β ) = f ∗(0) = 0. ♦
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Theorem 5.7.3. Let X = Sp×Sq and Y = Sp∨Sq ∨Sp+q. If p and q are not both 0,
then X and Y are not homotopy equivalent.

Proof. If p = 0 or q = 0 this is trivial.
Suppose p,q≥ 1. Then by Examples 5.7.1 and 5.7.2 X and Y have nonisomorphic

cohomology rings, so by Corollary 5.6.16 they are not homotopy equivalent. ��
Here is another computation of a cohomology ring.

Lemma 5.7.4. (1) Let n ≥ 1. Let α ∈ H1(RPn;Z2) be a generator. Then αk ∈
Hk(RPn;Z2) is a generator for all k ≤ n.

(2) Let n ≥ 1. Let α ∈ H2(CPn;Z2) be a generator. Then αk ∈ H2k(CPn;Z) is a
generator for all k ≤ n.

Proof. The proofs are almost identical so we prove (1).
We prove this by induction on n. The case n = 1 is trivial. Assume the

lemma is true for n and consider RPn+1. The inclusion RPn ↪→ RPn+1 induces
isomorphisms on (co)homology in dimensions at most n. That readily implies that
αk ∈ Hk(RPn+1;Z2) is a generator for all k ≤ n, so it remains to prove that αn+1

generates Hn+1(RPn+1;Z2).
Let RPn have homogeneous coordinates [x0, . . . ,xn] and let RP1 have homoge-

neous coordinates [y0,y1]. Then we have a map r : RPn ×RP1 → RP2n+1 given by

([x0, . . . ,xn], [y0,y1]) �−→ [x0y0, . . . ,xny0,x0y1, . . . ,xny1].

Let α ∈ H1(RP2n+1;Z2) be the generator. We will show that αn+1 ∈
Hn+1(RP2n+1;Z2) is the generator. Since the inclusion RPn+1 ↪→ RP2n+1 induces
isomorphisms on homology in dimensions at most n+ 1, that yields the inductive
step.

Consider the map p : RPn → RPn ×{[1,0]} ↪→ RPn ×RP1 → RP2n+1. Then
β = p∗(α) is the generator of H1(RPn;Z2) and by the inductive hypothesis
β n = (p∗(α))n = p∗(αn) is the generator of Hn(RPn;Z2). Similarly, if q :
RP1 → {[1, . . . ,0]}×RP1 ↪→RPn ×RP1 → RP2n+1, γ = q∗(α) is the generator of
H1(RP1;Z2).

But then, by Lemma 5.5.23 π1
∗(β n)× 1 is the generator of Hn(RPn;Z2)⊗

H0(RPn;Z2) ⊆ Hn(RPn × RP1;Z2) and 1 × π2
∗(γ) is the generator of

H0(RPn;Z2) ⊗ H1(RP1;Z2) ⊆ Hn(RPn × RP1;Z2). But then by the Künneth
formula

(π1
∗(β n)× 1)∪ (1×π2

∗(γ)) = π1
∗(β n)×π2

∗(γ)

generates Hn+1(RPn ×RP1;Z2).
But this class is just

r∗(αn)∪ r∗(α) = r∗(α)n ∪ r∗(α) = r∗(αn ∪α) = r∗(αn+1)
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so αn+1 must be the generator of Hn+1(RP2n+1;Z2). ��
Corollary 5.7.5. Let n>m≥ 1. If f :RPn →RPm is any map, then f∗ : H1(RPn)→
H1(RPm) is the zero map.

Proof. If m = 1, then H1(RPn) = Z2 and H1(RPm) = Z and the only map from Z2

to Z is the zero map. Suppose m > 1. Then H1(RPn) = Z2 and H1(RPm) = Z2, so
f∗ is either an isomorphism or the zero map.

Assume f∗ is an isomorphism. Then f∗ : H1(RPn;Z2)→ H1(RPm;Z2) is an iso-
morphism, by the universal coefficient theorem, and hence so is f ∗ : H1(RPm;Z2)→
H1(RPn;Z2). Let α be the generator of H1(RPm;Z2) so that β = f ∗(α) is the
generator of H1(RPn;Z2). Then by Lemma 5.7.4,

0 �= β n = ( f ∗(α))n = f ∗(αn) = f ∗(0) = 0,

a contradiction. (Note αn = 0 as αn ∈ Hn(RPm;Z2) = 0 as n > m.) ��
As a consequence of this we have the famous Borsuk-Ulam theorem.

Theorem 5.7.6 (Borsuk-Ulam). Let n ≥ 1. Let f : Sn → R
n be any map. Then

there is an x ∈ Sn with f (x) = f (−x).

Proof. Assume there is no such point x and define g : Sn → Sn−1 by

g(x) =
f (x)− f (−x)
| f (x)− f (−x)| .

Observe that g(−x) =−g(x).
Recall that for any n, RPn is the quotient of Sn by the antipodal map a(x) =−x.

Then we have the 2-fold covering maps pk : Sk → RPk, k = n− 1 or n, and a well-
defined map h : RPn → RPn−1 given by

h(pn(x)) = pn−1(g(x)).

Then we have a commutative diagram

S n

pn

g
S n−1

pn−1

RP n h
RP n−1 .

By Theorem 2.2.8, the map h lifts to a map h̃ : RPn → Sn−1 if and only if

h∗(π1(RPn))⊆ (pn−1)∗(π1(S
n−1)).
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We note that π1(RPn) and π1(RPn−1) are abelian, so they are isomorphic to
H1(RPn) and H1(RPn−1) respectively, and thus that will be the case if and only if

h∗(H1(RPn))⊆ (pn−1)∗(H1(S
n−1)).

But by Corollary 5.7.5, h∗ is the 0 map, so this is certainly true.
Now to complete the proof. We observe that pn−1h̃pn = pn−1g, i.e., h̃pn and g

are both liftings of h to a map from Sn to Sn−1.
Pick x0 ∈ Sn. Then h̃pn(x0) is one of the two points in Sn−1 covering

pn−1(g(x0)), i.e.,

h̃pn(x0) = g(x0) or − g(x0) = g(−x0).

If h̃pn(x0) = g(x0), set x1 = x0. Otherwise set x1 =−x0 and observe

h̃pn(x1) = h̃pn(−x0) = h̃pn(x0) = g(−x0) = g(x1).

Thus in any case we have found a point x1 on which both lifts of h agree. By the
uniqueness part of Theorem 2.2.8, this implies that they agree everywhere. But that
is a contradiction as on the one hand, since the lifts agree at −x1,

h̃pn(−x1) = g(−x1),

and on the other hand, since pn(−x1) = pn(x1),

h̃pn(−x1) = h̃pn(x1) = g(x1),

but

g(−x1) =−g(x1) �= g(x1).

��

5.8 Exercises

Exercise 5.8.1. Let A be a nonempty subspace of X . Show there is an exact
homology sequence

· · · −→ Hi(A)−→ Hi(X)−→ Hi(X ,A)−→ ·· ·
H1(X ,A)−→ H̃0(A)−→ H̃0(X)−→ H0(X ,A)−→ 0.

Exercise 5.8.2. (a) Let α ∈ Hk(X ,A). Show there is a compact pair (Y,B)⊆ (X ,A)
and an element β ∈ Hk(X ,A) such that α = i∗(β ), where i : (Y,B)→ (X ,A) is
the inclusion.
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(b) Let (Z,C)⊆ (X ,A) be a compact pair and let i : (Z,C)→ (X ,A) be the inclusion.
Let γ ∈ Hk(Z,C) with i∗(γ) = 0. Show there is a compact pair (Y,B) with
(Z,C) ⊆ (Y,B) ⊆ (X ,A) such that j∗(γ) = 0, where j : (Z,C) → (Y,B) is the
inclusion.

Note this shows that singular homology is compactly supported.

Exercise 5.8.3. Find an example of a path connected space X with H1(X) = 0,
and two path connected closed subspaces X1 and X2 of X with X = X1 ∪X2, where
A = X1 ∩X2 is not path-connected.

Note this shows that the Mayer-Vietoris sequence cannot be exact in this
situation. In fact, give an example of this where X , X1, and X2 are each contractible,
and where A is the union of two contractible path components.

Exercise 5.8.4. Compute H∗(RPn ×RPm;G), where (a) G = Z2 or (b) G = Z.

Exercise 5.8.5. Prove Theorem 5.5.20: The Euler characteristic of any space with
finitely generated homology may be computed using coefficients the integers Z or
any field, and using homology or cohomology (i.e., that the answers so obtained are
the same in all cases).

Exercise 5.8.6. Let X and Y be any spaces with finitely generated homology. Show
that χ(X ×Y ) = χ(X)χ(Y ).

Exercise 5.8.7. Let (X ,A) be any pair such that X and A both have finitely
generated homology. Assume A is nonempty. Show that χ(X/A)= χ(X)−χ(A)+1.

Exercise 5.8.8. Let F be a field. Describe the ring structure on H∗(X ×Y ;F) in
terms of the ring structures on H∗(X ;F) and H∗(Y ;F).

Exercise 5.8.9. The join X ∗Y of two spaces X and Y is the quotient space X ×
[−1,1]×Y/∼ where ∼ is the identification (x,−1,y1)∼ (x,−1,y2) for any y1,y2 ∈
Y and (x1,1,y)∼ (x2,1,y) for any x1,x2 ∈ X .

(a) Show that S0 ∗Y is homeomorphic to ΣY , the suspension of Y .
(b) Show that Si ∗ S j is homeomorphic to Si+ j+1.
(c) Show that Sk ∗ Y is homeomorphic to Σ k+1Y , the (k + 1)-fold suspension

Σ(Σ(· · · (ΣY ))) of Y .

Exercise 5.8.10. Let X and Y be spaces with χ(X) and χ(Y ) defined. Find χ(X ∗Y ).

Exercise 5.8.11. Compute H∗(X ∗Y ;G) in terms of H∗(X ;G) and H∗(Y ;G) in each
of the following cases: (a) G is a field, and (b) G = Z and both H∗(X ;G) and
H∗(Y ;G) are torsion-free.

Exercise 5.8.12. A space has category n if it can be written as the union of n open
contractible subspaces, but no fewer. A space has cup length m if there are m positive
dimensional cohomology classes whose cup product is nonzero, but no more. Show
that the category of a space is greater than its cup length.

Exercise 5.8.13. Show that each of RPn and CPn have category n+ 1, for every n.



Chapter 6
Manifolds

Manifolds are a particulary important class of topological spaces. On the one hand,
there are branches of topology entirely dedicated to studying them, and on the other
hand, they appear throughout much of mathematics. It would take us too far afield
to describe how they arise, but they have very special properties from the point of
view of algebraic topology. It is these that we investigate here.

We begin by defining manifolds, then investigate orientations, and finally arrive
at duality theorems.

Recall that a topological space is Hausdorff if any two distinct points have
disjoint open neighborhoods, and separable, or second countable, if it has a
countable basis for its topology.

6.1 Definition and Examples

Definition 6.1.1. A topological space M is an n-dimensional manifold (or
n-manifold, for short) if M is a separable Hausdorff space and if every point
x ∈ M has a neighborhood Ux that is homeomorphic to R

n. ♦
Lemma 6.1.2. M is an n-manifold if and only if M is a separable Hausdorff space
and M has an open cover {Uα} with each Uα homeomorphic to R

n.

Definition 6.1.3. Let M be an n-manifold as in Lemma 6.1.2 and for each α , let
ϕα : Rn → Uα be a homeomorphism. Then {(Uα ,ϕα)} is an atlas for M and each
(Uα ,ϕα) is a coordinate patch. ♦

In this situation we will often simply refer to Uα as a coordinate patch when it is
not important to specify the homeomorphism ϕα .

© Springer International Publishing Switzerland 2014
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Remark 6.1.4. Since R
n and D̊n (the interior of the unit disk in R

n) are
homeomorphic (e.g., by the map f (x) = x/(|x|+ 1)), we may replace R

n by D̊n

in the above. ♦
Definition 6.1.5. M is a compact n-manifold if it is an n-manifold that is compact
as a topological space. ♦

Here are some examples of manifolds.

Example 6.1.6. (1) R
n is an n-manifold. More generally, any open subset of Rn is

an n-manifold.
(2) Sn is a compact n-manifold. (For any point x ∈ Sn, Sn −{x} is homeomorphic

to R
n.)

(3) If M is an m-manifold and N is n-manifold, then M×N is an (m+n)-manifold.
(4) If p : Y → X is a covering projection, then X is a manifold if and only if Y is a

manifold. If Y is compact, then X is compact. If X is compact and p is a finite
covering, then Y is compact. Thus we see that RPn is a compact n-manifold, and
each lens space L2m−1(k; j1, . . . , jm) of Example 2.3.4 is a compact (2m− 1)-
manifold.

(5) Consider RPn = {[x0, . . . ,xn]}. For i = 0, . . . ,n, let pi = [x0, . . . ,xn] where xi = 1
and x j = 0 for j �= i. Then RPn −{pi} is homeomorphic to R

n, again showing
that RPn is an n-manifold. Next consider CPn = {[z0, . . . ,zn]} and similarly
let qi = [z0, . . . ,zn] where zi = 1 and z j = 0 for j �= i. Then CPn − {qi} is
homeomorphic to C

n, so CPn is a (2n)-manifold. Furthermore,RPn is the image
of Sn under the map (x0, . . . ,xn) �→ [x0, . . . ,xn], and CPn is the image of S2n+1

under the map (z0, . . . ,zn) �→ [z0, . . . ,zn], so RPn and CPn are both compact.
♦

Closely related to the notion of a manifold is that of a manifold with boundary.
We let Rn

+ denote the closed half-space in R
n given by R

n
+ = {(x1, . . . ,xn) ∈ R

n |
xn ≥ 0}. By definition,R0

+ = /0. For n≥ 1, we let ∂Rn
+ = {(x1, . . . ,xn)∈R

n | xn = 0}.

Definition 6.1.7. A topological space M is an n-dimensional manifold with bound-
ary (or n-manifold with boundary, for short) if M is a separable Hausdorff space and
if every point x ∈ M has a neighborhood Ux that is homeomorphic to R

n or Rn
+.

The interior int(M) = {x ∈ M | Ux is homeomorphic to R
n} and the boundary

∂M = {x ∈ M |Ux is homeomorphic to R
n
+}. ♦

Theorem 6.1.8. If M is an n-manifold with nonempty boundary then int(M) is an
n-manifold and ∂M is an (n− 1)-manifold.

Proof. The first statement is clear. As for the second, if x ∈ ∂M and ϕx : Rn
+ →U is

a homeomorphism with x ∈ ϕx(∂Rn
+), then ϕx|∂Rn

+ is a homeomorphism of ∂Rn
+

(itself homeomorphic to R
n−1) to the neighborhood U ∩∂M of x in ∂M. ��

We have the analogs of Lemma 6.1.2 and Definition 6.1.3.
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Lemma 6.1.9. M is an n-manifold with boundary if and only if M is a Hausdorff
space and M has an open cover {Uα} with each Uα homeomorphic to either R

n

or Rn
+.

Definition 6.1.10. Let M be an n-manifold with boundary as in Lemma 6.1.9 and
for each α , let ϕα : Rn → Uα or ϕα : Rn

+ → Uα be a homeomorphism. Then
{(Uα ,ϕα )} is an atlas for M and each (Uα ,ϕα) is a coordinate patch. ♦
Example 6.1.11. (1) Every manifold M is a manifold with empty boundary.
(2) For every n ≥ 1, Dn is a manifold with boundary whose boundary is Sn−1.
(3) Let M be an arbitrary n-manifold, n ≥ 1. Let ϕα : Rn →Uα ⊆ M be a coordinate

patch. Let D̊n be the open unit ball in R
n. Then M−ϕα(D̊n) is a manifold with

boundary whose boundary ϕα(Sn−1) is homeomorphic to Sn−1. ♦
We have the following very important (and highly nontrivial) homological

properties of manifolds.

Theorem 6.1.12. (1) Let M be an n-manifold (possibly with boundary). Then
Hk(M) = Hk(M) = 0 for all k > n.

(2) Let M be a compact n-manifold (possibly with boundary). Then Hk(M) and
Hk(M) are finitely generated for all k.

6.2 Orientations

In this section we develop the notion of orientation. We let G = Z/2Z or Z.

Lemma 6.2.1. Let M be an n-manifold and let x ∈ M be arbitrary. Then
Hn(M,M− x;G) is isomorphic to G.

Proof. Let (Uα ,ϕα) be a coordinate patch with x ∈ ϕα . Let p = ϕ−1
α (x), p ∈ R

n.
Then we have maps

(Rn,Rn −{p})−→ (Uα ,Uα −{x})−→ (M,M − x)

where the first map is ϕα and the second map is the inclusion. Now Hn(R
n,Rn −

{p};G) is isomorphic to G. The first map induces an isomorphism on homology as it
is a homeomorphism of pairs and the second map is an isomorphism as it is excisive.
(M−Uα = M−Uα ⊂ M− x = int(M− x)). Thus Hn(M,M− x;G) is isomorphic to
G as well. ��
Definition 6.2.2. A local G-orientation on M at x is a choice of isomorphism ϕx :
G → Hn(M,M − x;G). ♦

To (attempt to) define a G-orientation on M we need to see how local
G-orientations fit together.
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Definition 6.2.3. (1) Let x and y both lie in some coordinate patch Uα . Let ϕα :
R

n → Uα and set p = ϕ−1
α (x) and q = ϕ−1

α (y). Let D be a closed disc in R
n

containing both p and q. The local G-orientations ϕx and ϕy are compatible if
the following diagram commutes

Hn(M,M − x; G) Hn(Uα ,Uα − x; G)
∼=

Hn(Rn ,Rn − p; G)
(ϕα )∗

G

ϕy

ϕx

Hn(Rn ,Rn − D ; G)

∼=

∼=

Hn(M,M − y ; G) Hn(Uα ,Uα − y ; G)
∼=

Hn(Rn ,Rn − q; G)
(ϕα )∗

where the unlabelled maps are all induced by inclusions. ♦
(2) Let x and y both lie in the same component of M. Then ϕx and ϕy are compatible

if there is a sequence of points x0 = x,x1, . . . ,xk = y with xi and xi+1 both
lying in some coordinate patch, for each i, and ϕxi and ϕxi+1 are compatible for
each i. ♦

Remark 6.2.4. There is always such a sequence of points as we may let f : I → M
be an arbitrary map with f (0) = x and f (y) = 1. Then f (I) is a compact set so is
covered by finitely many coordinate patches, and then x0, . . . ,xk are easy to find.
Thus the condition in the definition is the condition on the local G-orientations. It is
also easy to check that this condition is independent of the choice of intermediate
points x1, . . . ,xk−1. ♦
Definition 6.2.5. The n-manifold M is G-orientable if there exists a compatible
collection of local G-orientations {ϕx} for all points x ∈ M. In that case a choice of
mutually compatible {ϕx} is a G-orientation of M.

If there is no compatible collection of local G-orientations on M then M is
G-nonorientable. ♦

We have so far let G = Z/2Z or Z. But now we see a big difference between
these two cases.

Theorem 6.2.6. Every manifold is Z/2Z-orientable.

Proof. Following the diagram in Definition 6.1.3 all the way around from G to G
gives an isomorphism from G to G, and ϕx and ϕy are compatible if and only if
this isomorphism is the identity. But the only isomorphism ϕ : Z/2Z→Z/2Z is the
identity. ��

Referring to the proof of this theorem, we see that in case G = Z we have an
isomorphism ϕ : Z → Z. But now there are two isomorphisms, the identity (i.e.,
multiplication by 1) and multiplication by −1. So a priori, M might or might not be
orientable.
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Theorem 6.2.7. (1) Let M be the union of components M = M1 ∪M2 ∪ ·· · . Then
M is Z-orientable if and only if each Mi is Z-orientable.

(2) Let M be connected. If M is Z-orientable, then M has exactly two
Z-orientations.

(3) If M has k components and is Z-orientable, then M has 2k
Z-orientations.

Proof. The important thing to note is that if ϕx : Z → Hn(M,M − x;Z) is a local
Z-orientation, there is exactly one other local Z-orientation at x, namely −ϕx, where
−ϕx : Z→ Hn(M,M − x;Z) is the map defined by −(ϕx)(n) =−ϕx(n), for n ∈ Z.

Thus if we have a compatible system of local Z-orientations {ϕx} on a connected
manifold M, then there are exactly two compatible systems of local Z-orientative
on M, namely {ϕx} and {−ϕx}. ��

Having made our point, we now drop the Z and use standard mathematical
language.

Definition 6.2.8. A local orientation on M is a local Z-orientation. M is orientable
(resp. nonorientable) if it is Z-orientable (resp. Z-nonorientable). An orientation of
M is a Z-orientation of M. ♦

Our first objective is to investigate when manifolds are orientable. In view of
Theorem 6.2.7, we may confine our attention to connected manifolds.

Definition 6.2.9. Let M be a connected n-manifold. Let ϕx be a local orientation
of M at x. Let y ∈ M and let f : I → M with f (0) = x and f (1) = y. The transfer
of ϕx along f to y is the local orientation fy(ϕx) of M at y obtained as follows:
Let 0 = t0 < t1 < · · · < tk = 1 such that, for each i, f ([ti, ti+1]) is contained in some
coordinate patch. Let xi = f (ti) for each i, so that, in particular, x0 = x and xk = y.
For each i, let ϕxi+1

be the local orientation of M at xi+1 compatible with the local
orientation ϕxi

of M at xi. Then fy(ϕx) = ϕxk
. ♦

The transfer of ϕx along f to y does not depend on the choice of points {ti} but
it certainly may depend on the choice of f . However, we have the following result.

Theorem 6.2.10. Let M be a connected n-manifold. Then a system of local
orientations {ϕx} is an orientation of M if and only if for every x,y ∈ M and
every path f : I → M with f (0) = x and f (1) = y, ϕy = fy(ϕx). In particular, M
is orientable if and only if fy(ϕx) is independent of the choice of f .

Proof. If M is orientable, let {ϕx} be an orientation, i.e., a compatible system of
local orientations. Then for any path f , fy(ϕx) = ϕy is independent of the choice
of f .

Conversely, if fy(ϕx) is independent of the choice of f , we may obtain a
compatible system of local orientations as follows: Choose a point x ∈ M and a
local orientation ϕx. Then for a point y ∈ M, choose any path f from x to y and let
ϕy = fy(ϕx). ��

This result makes it crucial to investigate the dependence of fy(ϕx) on the choice
of the path f . We do that now.
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Lemma 6.2.11. (1) Let x and y be two points in M that are both contained in some
coordinate patch Uα . Then for any two paths f and g from x to y with f (I)⊂Uα
and g(I)⊂Uα , fy(ϕx) = gy(ϕx).

(2) Let x and y be any two points in M. If f and g are any two paths in M that are
homotopic rel {0,1}, then fy(ϕx) = gy(ϕx).

Proof. (1) Since I is compact, f (I) is a compact subset of Uα , and hence ϕ−1
α ( f (I))

is a compact subset of Rn, as is ϕ−1
α (g(I)). But then we may choose the disc D

in Definition 6.2.3 so large that D includes ϕ−1
α ( f (I))∪ϕ−1

α (g(I)).
(2) Let F : I× I → M be a homotopy of f to g rel {0,1}. Then F(I× I) is a compact

subset of M, so is covered by finitely many coordinate patches. It is then easy
to see that there is some k such that if I × I is divided into k2 subsquares Ji, j =
[i/k,(i+1)/k]× [ j/k,( j+1)/k], each F(Ji, j) is contained in a single coordinate
patch.

But then we have a sequence of paths from f to g, or, more precisely, to the
constant path followed by g followed by the constant path, with each path giving
the same transferred orientation, according to part (1) and the following picture:

· · ·

· · ·

��
Lemma 6.2.12. (1) Let f be a path in M from x to y and let g be a path in M from

y to z. Let h = f g be the path from x to z obtained by first following f and then
following g. Then hz(ϕx) = gz( fy(ϕx)).

(2) Let f and g be paths in M from x to y and let g be the path in M from y to x
which is the reverse of g. Let h = f g, a path from x to x. Then fy(ϕx) = gy(ϕx)
if and only if hx(ϕx) = ϕx.

Before continuing with our general investigation of orientability, we pause to record
the following very important special case.

Theorem 6.2.13. Let M be a connected n-manifold. If M is simply connected, then
M is orientable.
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Proof. By Theorem 6.2.10, we must show that { fy(ϕx)} is independent of the
choice of f . By Lemma 6.2.12(2), that will be the case if hx(ϕx) = ϕx for any loop
hx based at x. But by Lemma 6.2.11, hx(ϕx) only depends on the homotopy class of
the loop h. If M is simply connected, then h is homotopic to the constant path c at x,
and certainly cx(ϕx) = ϕx. ��

Now we return to consideration of a general connected n-manifold M. Let x be a
point of M.

As we have observed, the two local orientations at x are ϕx and −ϕx. We now
define the orientation character.

Definition 6.2.14. Let f be a closed path in M based at x. The orientation character
w( f ) ∈ Z/2Z= {0,1} is defined by

fx(ϕx) = (−1)w( f )ϕx. ♦
Theorem 6.2.15. A connected manifold M is orientable if and only if its orientation
character w( f ) = 0 for every loop f in M.

Proof. In light of Lemma 6.2.12, this is just a restatement of Theorem 6.2.10. ��
We now derive several other maps from the orientation character, but we mostly

use the same letter to denote them.

Lemma 6.2.16. Let M be a connected manifold. The orientation character gives a
homomorphism

w : π1(M,x) −→ Z/2Z

defined by w(α) = w( f ) where f is a loop in M representing α ∈ π1(M,x).

Proof. By Lemma 6.2.12(2), w depends only on the homotopy class of f , and by
Lemma 6.2.12(1), w is a homomorphism. ��
Corollary 6.2.17. Let M be a connected nonorientable manifold. Then M has a
unique 2-fold cover N that is orientable.

Proof. N is the cover of M corresponding to the subgroup Ker(w) ⊂ π1(M,x) of
index 2 as in Theorem 2.2.19. ��
Lemma 6.2.18. Let M be a manifold. The orientation character gives a
homomorphism

w : H1(M;Z) −→ Z/2Z.

Proof. The map w : π1(M,x) → Z/2Z is a map to an abelian group, so factors
through the abelianization of π1(M,x). In case M is connected that is just H1(M;Z)
by Theorem 5.2.4. In the general case, just consider each component of M
separately. ��
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Theorem 6.2.19. Let M be a manifold. The orientation character gives a
homomorphism

w : H1(M;Z/2Z)−→ Z/2Z.

Proof. The map w : H1(M;Z) → Z/2Z factors through H1(M;Z)/2H1(M;Z) (i.e.
w(2α) = 2w(α) = 0 for any α ∈ H1(M;Z)), and H1(M;Z)/2H1(M;Z) is isomor-
phic to H1(M;Z)⊗Z/2Z. In turn, this group is isomorphic to H1(M;Z/2Z) by the
universal coefficient theorem, Theorem 5.3.9, as H0(M;Z) = Z is torsion-free. ��
Corollary 6.2.20. Let M be a manifold. If H1(M;Z/2Z) = 0, then M is orientable.

Recall we have the universal coefficient theorem, Theorem 5.5.12. Since
H0(M;Z) = Z, that theorem gives an isomorphism

e : H1(M;Z/2Z)−→ Hom(H1(M),Z/2Z).

Definition 6.2.21. Let w : H1(M;Z) → Z/2Z be the orientation character as in
Lemma 6.2.18. Let w1(M) = e−1(w) ∈ H1(M;Z/2Z). Then w1(M) is the first
Stiefel-Whitney class of M. ♦
Corollary 6.2.22. Let M be a manifold. Then M is orientable if and only if
w1(M) = 0.

As usual, we do not just want to investigate objects but also maps between them.
Here our objects are manifolds and the relevant maps are homeomorphisms.

Definition 6.2.23. Let M be a manifold and let {ϕx} be a compatible system of
local G-orientations of M, thus giving a G-orientation of M, for G = Z/2Z or Z.
Let f : M → N be a homeomorphism. Then the induced G-orientation on N is the
G-orientation given by the compatible system of local G-orientations {ϕy} given as
follows: For y ∈ N, let x = f−1(y). Then ϕy is the map making the diagram

Hn (M,M−x;G) Hn (N,N− y;G)
f∗

G

ϕx ψy

commute. ♦
Now we generalize from manifolds to manifolds with boundary. The first step

could not be easier.

Definition 6.2.24. Let M be a manifold with boundary. M is orientable if int(M) is
orientable. In that case, an orientation of M is an orientation of int(M). ♦
What is considerably more subtle is to see how an orientation of M gives an
orientation of ∂M. We investigate that now.
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We must see how to obtain local orientations on ∂M from local orientations
on int(M). The procedure is rather involved. We begin by working in R

n, and
we identify R

n−1 with {(x1, . . . ,xn−1,0)} ⊂ R
n
+. We let p = (0, . . . ,0) ∈ R

n and
q = (0, . . . ,0,1) ∈ R

n. We let C = {x ∈ R
n−1 | |x| < 1} and B = C × [0,2) ⊂ R

n
+,

and B =C× (0,2)⊆ B.
Here is a schematic picture.

• p

• q

B

C

The key step is to construct an isomorphism

τ : Hn(B,B− q)−→ Hn−1(C,C− p).

First we note that the boundary map in the exact sequence of the pair (B,B− q)
gives an isomorphism Hn(B,B−q)→ Hn−1(B−q), and similarly the boundary map
in the exact sequence of the pair (C,C− p) gives an isomorphism Hn−1(C,C− p)→
Hn−2(C− p). Now the inclusion (B,B−q)→ (B,B−q) is a homotopy equivalence
of pairs so induces an isomorphism on homology.

Now B− q is the union B− q = D∪E where

D = {(x1, . . . ,xn) ∈ B | (x1, . . . ,xn) �= (0, . . . ,0, t) for 0 ≤ t ≤ 1}

and

E = {(x1, . . . ,xn) ∈ B | 0 ≤ xn < 1}=C× [0,1).

Note that

D∩E = (C− p)× [0,1)

and the inclusion C− p → D∩E is a homotopy equivalence, hence an isomorphism
on homology.

We now consider the Mayer-Vietoris sequence for B− q = D∪E and observe
that we have an isomorphism

∂ : Hn−1(B− q)−→ Hn−2(D∩E).
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Composing all these isomorphisms or their inverses as indicated below we obtain
the isomorphism τ:

Hn(B,B − q) Hn−1(B − q) Hn−1(B − q)

∂

Hn−1(C,C − p) Hn−2(C − p) Hn−2(D ∩ E )

Given this construction we make the following definition.

Definition 6.2.25. Let {ϕy} be an orientation of int(M), i.e., a compatible system
of local orientations. The induced orientation of ∂M is the compatible system of
local orientations {ϕx} obtained as follows: ϕx is the composition of isomorphisms
and their inverses

Z

ϕy
Hn(M,M − y) Hn(ϕα (B),ϕα (B) − y) Hn(B,B − q)

(ϕα )∗

τ

Hn−1( ∂M,∂M − x) Hn−1(ϕα(C ),ϕα (C ) − x) Hn−1(C,C − p)
(ϕα )∗

Here ϕα : Rn
+ → Uα ⊆ M is a coordinate patch with ϕα(p) = x and ϕα(q) = y.

The maps labelled (ϕα)∗ are both restrictions of ϕα to the respective domains, and
the unlabelled maps are excision isomorphisms. ♦
Theorem 6.2.26. Let M be an oriented manifold with boundary. Then ∂M has a
well-defined induced orientation given by the construction in Definition 6.2.25.

In particular, ∂M is orientable.

Proof. This is simply a matter of checking that the local orientations {ϕx} are
indeed compatible, and that they are independent of the choice of coordinate patches
(Uα ,ϕα) used in the construction. ��
Remark 6.2.27. If M is not orientable, then ∂M may or may not be orientable
(i.e., both possibilities may arise). ♦

In practice, we often also want to consider (co)homology with coefficients in a
field. In this regard we have the following result.

Lemma 6.2.28. Let G = F be a field of characteristic 0 or odd characteristic. Then
a manifold M is G-orientable if and only if it is orientable. If G = F is a field of
characteristic 2, then every manifold M is G-orientable.

Proof. We do the more interesting case of a field F of characteristic �= 2. Consider
the diagram in Definition 6.2.3.

If we let V = ϕx(D) and replace G in that diagram by Hn(M,M −V ;G) and
the two vertical maps by the isomorphisms induced by inclusions, we obtain a
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commutative diagram. This is true whether we use F coefficients or Z coefficients.
But we also have the commutative diagram with the horizontal maps induced by the
map Z→ F of coefficients

Hn(M,M − x;Z) Hn(M,M − x;F)

Hn(M,M − V ;Z)

∼=

∼=

Hn(M,M − V ;F)

∼=

∼=

Hn(M,M − y ;Z) Hn(M,M − y ;F)

Now if M is Z-orientable it has a compatible collection of local Z-orientations
{ϕx} and then {ϕx ⊗ 1} is a compatible collection of local F-orientations.

On the other hand, suppose we have a compatible collection {ψx} of local F-
orientations. Fix a point x ∈ M. Then ψx(1) ∈ Hn(M,M − x;F) is a generator, i.e.,
a nonzero element. This element may not be in the image of Hn(M,M − x;Z). But
there is a nonzero element f of F (in fact, exactly two such) such that f ψx(1) is the
image in Hn(M,M − x;F) of a generator of Hn(M,M − x;Z). By the commutativity
of the above diagram that implies the same is true for f ψy(1) for every y ∈ M.
Hence { f ψx} is a compatible system of local Z-orientations of M, where x varies
over M. ��

The proof of this lemma also shows how to obtain F-orientations.

Definition 6.2.29. Let M be orientable and let F be an arbitrary field. An
F-orientation of M is a compatible system of local F-orientations of the form
{ϕx ⊗ 1} where {ϕx} is a compatible system of local Z-orientations of M.

Let M be arbitrary and let F be a field of characteristic 2. An F-orientation of M
is a compatible system of local F-orientations of the form {ϕx ⊗1} where {ϕx} is a
compatible system of local Z/2Z-orientations of M. ♦

(In the characteristic 2 case compatibility is automatic.)
It is easy to check that the two parts of this definition agree when M is orientable

and F has characteristic 2.
Orientability has very important homological implications, given by the follow-

ing theorem. We state this theorem for manifolds with boundary, which includes
the case of manifolds by taking ∂M = /0. The hypothesis that M be connected is
not essentially restrictive, as otherwise we could consider each component of M
separately.

Theorem 6.2.30. Let M be a compact connected n-manifold with boundary. Let
G = Z/2Z or Z.

If M is G-oriented, suppose that {ϕx} is a compatible system of local
G-orientations giving the G-orientation of M. In this case, there is a unique
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homology class [M,∂M] ∈ Hn(M,∂M;G) with i∗([M,∂M]) = ϕx(1) ∈ Hn(M,M −
x;G) for every x ∈ M, where i : (M,∂M) → (M,M − x) is the inclusion of pairs.
Furthermore, [M,∂M] is a generator of Hn(M,∂M;G).

If M is not G-orientable, then Hn(M,∂M;G) = 0.

Since this theorem is so important, we will explicitly state one of its immediate
consequences.

Corollary 6.2.31. Let M be a compact connected n-manifold with boundary.

(1) For any such M, Hn(M,∂M;Z/2Z) ∼= Z/2Z and Hn(M,∂M;Z/2Z) ∼= Z/2Z.
(2) If M is orientable, then Hn(M,∂M;Z) ∼= Z and Hn(M,∂M;Z) ∼= Z. If M is not

orientable, then Hn(M,∂M;Z) = 0 and Hn(M,∂M;Z) = 0.

Proof. The statements on homology are a direct consequence of Theorems 6.2.6
and 6.2.30.

The statements for cohomology then follow from the universal coefficient
theorem and Theorem 6.1.12. ��
Example 6.2.32. We computed the homology of RPn in Theorem 4.3.4. Combining
that result with Corollary 6.2.31, we see that RPn is orientable for n odd and
nonorientable for n even. ♦
Definition 6.2.33. Let M be a compact connected G-oriented n-manifold,
G=Z/2Z or Z. The homology class [M,∂M]∈Hn(M,∂M;G) as in Theorem 6.2.30
is called the fundamental homology class (or simply fundamental class) of
(M,∂M). Its dual {M,∂M} in Hn(M,∂M;G), i.e., the cohomology class with
e({M,∂M}, [M,∂M]) = 1, is the fundamental cohomology class of (M,∂M).

If M is oriented and G is any coefficient group, the image of [M,∂M] in
Hn(M,∂M;G) under the coefficient map Z → G is also called a fundamental
homology class, and similarly the image of {M,∂M} on Hn(M,∂M;G) under the
same coefficient map is also called a fundamental cohomology class. ♦
Remark 6.2.34. We need to be careful in Definition 6.2.33 when we referred to the
dual of a homology class. In general, if V is a free abelian group (or a vector space)
if does not make sense to speak of the dual of an element v of V . But it does make
sense here. Suppose that M is connected. Then Hn(M;G) is free of rank 1 (in case
M is orientable and G = Z) or is a 1-dimensional vector space over Z/2Z (for M
arbitrary and G = Z/2Z) and we have the pairing e : Hn(M;G)⊗Hn(M;G) → G.
In this situation, given a generator v of Hn(M;G), there is a unique element (also
a generator) v∗ in Hn(M;G) with e(v∗,v) = 1, and v∗ is what we mean by the dual
of v.

In general, if M is the disjoint union of k components, M = M1 ∪ ·· · ∪Mn, then
[M] is the sum [M1]+ · · ·+[Mk] ∈ Hn(M;G), and we take {M} to be the sum {M1}
+ · · ·+ {Mk} ∈ Hn(M;G). ♦

Recall we showed in Theorem 6.2.26 that if M is an orientable n-manifold with
boundary ∂M, then ∂M is also orientable, and furthermore we showed how to obtain
an orientation for ∂M from that on M. That fits in with the homological description
as follows.
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Corollary 6.2.35. Let M be a G-oriented n-manifold with boundary, G = Z/2Z
or Z, given by a compatible system of local orientations on M, and let [M,∂M] ∈
Hn(M,∂M;G) be the fundamental class of M with this orientation. Let ∂M have
the induced orientation as in Definition 6.2.25, and let [∂M] ∈ Hn−1(∂M;G) be the
fundamental class of ∂M with this orientation. Then

[∂M] = ∂ ([M,∂M])

where ∂ : Hn(M,∂M;G)→Hn−1(∂M;G) is the boundary map in the exact sequence
of the pair (M,∂M).

We record the following observation for future use.

Corollary 6.2.36. Let M be a G-oriented n-manifold with boundary with funda-
mental class [M,∂M], and let ∂M have the induced G-orientation with fundamental
class [∂M]. If i : ∂M → M is the inclusion, then i∗([∂M]) = 0 ∈ Hn−1(M;G).

Proof. We have the exact sequence of the pair (M,∂M):

Hn(M,∂M;G)
∂−→ Hn−1(∂M;G)

i∗−−→ Hn−1(M;G).

But [∂M] = ∂ ([M,∂M]), so by exactness i∗([∂M]) = 0. ��

6.3 Examples of Orientability and Nonorientability

In this section we look at a family of manifolds, and by directly working with local
orientations and coordinate patches determine when they are orientable.

Remark 6.3.1. We have properly defined an orientation of M as a compatible system
of local orientations {ϕx}, where ϕx : Z → Hn(M,M − x;Z) is an isomorphism.
This gives a choice of generator ϕx(1) ∈ Hn(M,M − x;Z). It is common to think
of an orientation of M as a consistent choice of generators of Hn(M,M − x;Z)
for every x ∈ M, where a consistent choice of generators means that {ϕx} are all
compatible. ♦

We now give several examples of orientable and nonorientable manifolds (and
we will be using the approach of this remark in our investigation).

Example 6.3.2. (1) We shall show that S1 is orientable. We take a rather strange
looking description and parameterization of S1, but we do so to use this
as a “warm-up” for the next part of this example, where the corresponding
parameterization will simplify matters. We let

Iα = (−2,6) and Iβ = (−6,2)
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with Iα parameterized by s and Iβ parameterized by t, and we let M1 be the
identification space

Iα ∪ Iβ/∼
where the identification ∼ is given by

s ∈ Iα ∼ s ∈ Iβ if − 2 < s < 2

s ∈ Iα ∼ s− 8 ∈ Iβ if 2 < s < 6.

Then M1 is homeomorphic to S1. A homeomorphism is given by s �→
exp(π is/4). (Note this map is well-defined on M1.)

We let ϕα : Iα →M1 and ϕβ : Iβ →M1 be the inclusions and let Uα =ϕα(Iα),
Uβ = ϕβ (Iβ ). Then {(Uα ,ϕα),(Uβ ,ϕβ )} is an atlas on M1.

Let f (r) = ϕα(r), 0 ≤ r ≤ 4. Then f (r) is a path from x = f (0) to y = f (1)
lying entirely in Uα . Let g(r) = ϕβ (r− 8), 4 ≤ r ≤ 8. Then g(r) is a path from
g(4) to g(8) lying entirely in Uβ . But g(4) = f (1) and g(8) = f (0), so

h(r) =

{
f (r) 0 ≤ r ≤ 4

g(r) 4 ≤ r ≤ 8

is a path in M1 from x to x. It is easy to check that under the above
homeomorphism, this becomes a loop in S1 from 1 to 1 winding once around
S1 counterclockwise. In particular this loop represents a generator of π1(M1,x),
so to show that M1 is orientable we need only show that hx(ϕx) = ϕx, where ϕx
is a local orientation of M1 at x.

We need to establish a bit of notation. Recall that for a space consisting
of the point z we have the generator 1z of H0(z) as in Definition 5.1.21. That
notation would be too confusing in the current context, so instead we denote
this homology class by 〈z〉.

Recall that if I is an open interval and i is any point of I, we have the
isomorphism ∂ : H1(I, I − i) → H0(I − i) of the exact sequence of the pair
(I, I − i).

We have the generator ∂−1(〈1〉−〈−1〉) of H1(Iα , Iα −{0}) and we give M1

the local orientation at x determined by

ϕx(1) = (ϕα)∗(∂−1(〈1〉− 〈−1〉)) ∈ H1(M,M − x).

Now the points x and y both lie in the same coordinate path Uγ for both γ =α
and γ = β . Let p = ϕ−1

γ (x) and q = ϕ−1
γ (y). Then we have the diagram from

Definition 6.2.25 (where we omit the intermediate groups)
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H1(M 1 ,M 1 − x) H1(Iγ , Iγ − p)
(ϕγ )∗

H1(Iγ , Iγ − D)

H1(M 1 ,M 1 − y) H1(Iγ , Iγ − q)
(ϕγ )∗

Since the path f lies entirely in Uα , we use this diagram with γ = α to
compute fy(ϕx).

((ϕα)∗)−1(ϕx(1)) = ∂−1(〈1〉− 〈−1〉) ∈ H1(Iα , Iα −{0})
= ∂−1(〈5〉− 〈−1〉) ∈ H1(Iα , Iα −{0})
= ∂−1(〈5〉− 〈−1〉) ∈ H1(Iα , Iα − [0,4])

= ∂−1(〈5〉− 〈−1〉) ∈ H1(Iα , Iα −{4})
= ∂−1(〈5〉− 〈3〉) ∈ H1(Iα , Iα −{4})

giving the local orientation ϕy at y specified by

ϕy(1) = (ϕα)∗(∂−1(〈5〉− 〈3〉)) ∈ H1(M
1,M1 − y).

Similarly, the path g lies entirely in Uβ , so we use the diagram with γ = β to
compute gx(ϕy). The key to this computation is starting it off correctly.

((ϕβ )∗)−1(ϕy(1)) = ((ϕβ )∗)−1(ϕα)∗(∂−1(〈5〉− 〈3〉))
= (ϕβ

−1ϕα)∗(∂−1(〈5〉− 〈3〉)).

Referring to our original identifications, we see that

5 ∈ Iα ∼−3 ∈ Iβ , 3 ∈ Iα ∼−5 ∈ Iβ

and so

((ϕβ )∗)−1(ϕy(1)) = ∂−1(〈−3〉− 〈−5〉) ∈ H1(Iβ , Iβ −{−4})
= ∂−1(〈1〉− 〈−5〉) ∈ H1(Iβ , Iβ −{−4})
= ∂−1(〈1〉− 〈−5〉) ∈ H1(Iβ , Iβ − [−4,0])

= ∂−1(〈1〉− 〈−5〉) ∈ H1(Iβ , Iβ −{0})
= ∂−1(〈1〉− 〈−1〉) ∈ H1(Iβ , Iβ −{0})
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giving the local orientation ϕ ′
x at x specified by

ϕ ′
x(1) = (ϕβ )∗(∂−1(〈1〉− 〈−1〉)) ∈ H1(M

1,M1 − x).

Now M1 is orientable if and only if this new local orientation ϕ ′
x at x is

the same as the original local orientation. But, again referring to our original
identifications, we see that 1 ∈ Iα ∼ 1 ∈ Iβ and −1 ∈ Iα ∼ −1 ∈ Iβ so this is
indeed the case.

(2) We now do a more elaborate, and much more interesting, computation along
the same lines. Let m be a non negative integer and let n = m+ 1. Let

Vα = (−2,6)× (−4,4)m and Vβ = (−6,2)× (−4,4)m

(where again these numbers are just chosen for convenience) and let Mn be the
identification space

Mn =Vα ∪Vβ/∼

where the identification is as follows:

(s, t) ∈Vα ∼ (s, t) ∈Vβ if − 2 < s < 2

(s, t) ∈Vα ∼ (s− 8,−t) ∈Vβ if 2 < s < 6.

Here t = (t1, . . . , tm) is an m-tuple of real numbers and −t = (−t1, . . . ,−tm).
In case m = 0, we just recover S1, as in part (1). In case m = 1, Mn is a Möbius
strip (or, to be precise, an “open” Möbius strip, as its boundary is missing). In
general, Mn is an n-manifold.

We shall show that Mn is orientable if m is even (i.e., if n is odd) and that Mn

is nonorientable if m is odd (i.e., if n is even). In particular, the Möbius strip is
nonorientable.

We let ϕα : Vα → Mn and ϕβ : Vβ → Mn be the inclusions, and let Uα =
ϕα(Vα) and Uβ = ϕβ (Vβ ). Thus {(Uα ,ϕα),(Uβ ,ϕβ )} is an atlas for Mn.

We begin by observing that Mn has {(t,0)} as a strong deformation retract,
and {(t,0)} is just S1 (up to homeomorphism). Thus, as in part (1), to check
whether Mn is orientable we just have to consider what happens on a single
loop that generates the fundamental group of Mn.

We let x = ϕα(0,0) = ϕβ (0,0) and y = ϕα(4,0) = ϕβ (−4,0). We let f (r) =
ϕα(r,0), 0 ≤ r ≤ 4 and g(r) = ϕβ (r− 8,0), 4 ≤ r ≤ 8 so that

h(r) =

{
f (r) 0 ≤ r ≤ 4

g(r) 4 ≤ r ≤ 8

is a loop in Mn that represents a generator of π1(Mn,x).
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Again we observe that if V = Vα or Vβ and v is any point of V , we have the
isomorphism ∂ : Hn(V,V − v)→ Hn−1(V − v) of the exact sequence of the pair
(V,V − v).

Let i : Sn−1 → Vα − (0,0) by i(s, t1, . . . , tm) = (s, t1, . . . , tm) and choose a
generator g0 of Hn−1(Sn−1) so that i∗(g0) = g1 is a generator of Hn−1(Vα −
(0,0)).

Observe that i is homotopic to j : Sn−1 → Vα − (0,0) by j(s, t1, . . . , tm) =
(3(s + 2), t1, . . . , tm), so that g2 = j∗(g0) = g1 ∈ Hn−1(Vα − (0,0)), and that
j(Sn−1) ⊂ Vα −D where D is the disk of radius 2 around (2,0), so that (0,0)
and (4,0) are both contained in D. The inclusion V −D → V − (0,0) induces
an isomorphism on homology and we identify Hn−1(V − (0,0)) and Hn−1(V −
D) by this isomorphism, and similarly for Hn−1(V − (4,0)) and Hn−1(V −
D). In turn j is homotopic to k : Sn−1 → Vα − (4,0) by k(s, t1, . . . , tm) =
(s+ 4, t1, . . . , tm) so that g3 = k∗(g0) = g2 ∈ Hn−1(V − (4,0)).

With these observations out of the way, we get down to work. The argument
here parallels that in part (1). We begin by giving Mn the local orientation at x
determined by

ϕx(1) = (ϕα)∗(∂−1(g1)) ∈ Hn(M
n,Mn − x).

Since the path f lies entirely in Uα , we may use the analogous method to
compute fy(ϕx), translating everything to Vα . We then get

((ϕα )∗)−1(ϕx(1)) = ∂−1(g1) ∈ Hn(Vα ,Vα − (0,0))

= ∂−1(g2) ∈ Hn(Vα ,Vα − (0,0))

= ∂−1(g2) ∈ Hn(Vα ,Vα −D)

= ∂−1(g2) ∈ Hn(Vα ,Vα − (4,0))

= ∂−1(g3) ∈ Hn(Vα ,Vα − (4,0))

giving the local orientation ϕy at y specified by

ϕy(1) = (ϕα)∗(∂−1(g3)) ∈ Hn(M
n,Mn − y).

Now we translate everything to Vβ to compute gx(ϕy). Again it is crucial to
start correctly. We have g3 = k∗(g0), so

((ϕβ )∗)−1(ϕy(1)) = (ϕβ )
−1
∗ (ϕα)∗(∂−1(k∗(g0)))

= ∂−1(ϕ−1
β ϕα k)∗(g0).

Now on the one hand, we have k : Sn−1 →Vα by

k(s, t) = (s+ 4, t)
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and on the other hand, we may consider l : Sn−1 →Vβ by

l(s, t) = (s− 4, t).

But, referring to our original identifications, we see that (s+4, t)∼ (s−4,−t),
i.e., that ϕα k = ϕβ l. Hence we see that

ϕ−1
β ϕα k = l.

Now we follow the same argument to conclude that we obtain a new
local orientation of Mn at x given by ϕ ′

x(1) = gx(ϕy(1)) = (ϕβ )∗(∂−1(g′1))
where g′1 = m∗(g0) with m(s, t) = (s,−t). But in a neighborhood of (0,0),
the identification is (s,0) ∼ (s,0), i.e., ϕβ = ϕα there. Thus ϕ ′

x(1) = ±ϕx(1)
according as g′1 = m∗(g0) =±g1 =±i∗(g0).

To determine the sign, we observe that m is the composition m = ia where
a : Sn−1 → Sn−1 by a(s, t) = (s,−t). We recognize a as the suspension of the
antipodal map a : Sm−1 → Sm−1, except that we are using the first coordinate as
the suspension coordinate rather than the last one, so the degree of a is equal to
the degree of a, which is (−1)m by Lemma 4.1.10.

(3) There is a homeomorphism h : Mn → Nn ⊂ RPn of Mn onto an open subset
of RPn for each n, which includes an isomorphism h∗ : H1(Mn;Z/2Z) →
H1(RPn;Z/2Z) and so we may compute the orientation character of RPn by
considering Mn. Thus we conclude from part (2) that RPn is orientable for n
odd and nonorientable for n even. ♦

Remark 6.3.3. Our conclusion in Example 6.3.2(3) of course agrees with our
conclusion in Example 6.2.32. ♦

6.4 Poincaré and Lefschetz Duality and Applications

In this section we give the basic duality theorems: Poincaré duality for compact
G-oriented manifolds and Lefschetz duality for compact G-oriented manifolds with
boundary. We then do some examples and give some important applications of these
important theorems. Throughout, we let G = Z or a field F.

First we deal with the case of compact manifolds. Let M be a compact G-oriented
n-manifold. Recall we defined the fundamental homology class [M] ∈ Hn(M;G) in
Definition 6.2.33.

Theorem 6.4.1 (Poincaré duality). Let M be a compact G-oriented n-manifold,
and let [M] ∈ Hn(M;G) be its fundamental homology class. Then the map

∩[M] : H j(M;G)−→ Hn− j(M;G)

is an isomorphism for every j = 0, . . . ,n.
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Now we deal with compact manifolds with boundary. Again for a compact
G-oriented n-manifold M with boundary we have the fundamental homology
class [M,∂M] ∈ Hn(M,∂M;G), and in this situation ∂ ([M,∂M]) = [∂M] is the
fundamental homology class of ∂M with the induced G-orientation.

Theorem 6.4.2 (Lefschetz duality). Let M be a compact G-oriented n-manifold
with boundary. In the diagram

· · · H j−1 (M ; G)

∩[ M,∂M ]

H j−1 (∂M ; G)

∩[∂M ]

H j ( M,∂M ; G)

∩[ M,∂M ]

H j (M ; G)

∩[ M,∂M ]

· · ·

· · · Hn−j+1 ( M,∂M ; G) Hn−j (∂M ; G) Hn−j (M ; G) Hn−j ( M,∂M ; G) · · ·

the left-hand square commutes up to a factor of (−1) j−1, the middle and right-hand
squares commute, and the vertical maps are all isomorphisms.

In particular, the maps

∩[M,∂M] : H j(M,∂M;G) −→ Hn− j(M;G)

and

∩[M,∂M] : H j(M;G)−→ Hn− j(M,∂M;G)

are isomorphisms for every j = 0, . . . ,n.

We now give several examples of how to use Poincaré duality to compute the
structure of cohomology rings. In these examples, we will be using the properties of
cup and cap products given in Theorem 5.6.13, and the notation in that theorem.

Example 6.4.3. (1) Let G = Z. Choose an orientation of Sp, and let Sp have
fundamental homology class [Sp] and fundamental cohomology class {Sp}.
Also choose an orientation of Sq and let Sq have fundamental homology class
[Sq] and fundamental cohomology class {Sq}.

Let M = Sp × Sq with p,q ≥ 1, so that M is connected. For simplicity,
we consider the case p �= q. (The argument for p = q is similar but a bit
more complicated.) Then Hp(M) is generated by ã = (i1)∗([Sp]) and Hq(M)
is generated by b̃ = (i2) ∗ ([Sq]) where i1 : Sp → M and i2 : Sq → M are the
inclusions Sp → Sp × {∗} ⊂ M and Sq → {∗} × Sq ⊂ M. Also, H p(M) is
generated by α̃ = π∗

1 ({Sp}) and Hq(M) is generated by β̃ = π∗
2 ({Sq}) where

π1 : M → Sp and π2 : M → Sq are projections onto the first and second factors
respectively.

By Poincaré duality, ∩[M] : Hq(M)→ Hp(M) is an isomorphism. Hence β̃ ∩
[M] =±ã, and we choose the orientation on M so that the sign is positive. Then

1 = e(α̃, ã) = e(α̃, β̃ ∩ [M]) = e(α̃ ∪ β̃ , [M]) = e({M}, [M])
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and hence γ̃ = α̃ ∪ β̃ = {M} is a generator of H p+q(M). We thus recover the
computation of Example 5.7.1.

(2) We take G = Z/2Z. Let α ∈ H1(RPn) be a generator. We claim that
αk ∈ Hk(RPn) is a generator for each k. We prove this by induction on n.
The case n = 1 is trivial. Assume this is true for n and consider RPn+1. The
inclusion RPn →RPn+1 induces isomorphism on (co)homology in dimensions
at most n. By Poincaré duality,

∩[RPn+1] : H1(RPn+1)−→ Hn(RPn+1)

is an isomorphism, and so

α ∩ [RPn+1] = [RPn] ∈ Hn(RPn+1).

By the induction hypothesis, αn = {RPn} ∈ Hn(RPn+1).
But then

1 = e({RPn}, [RPn]) = e(αn,α ∩ [RPn+1])

= e(αn+1, [RPn+1]) = e({RPn+1}, [RPn+1])

so αn+1 = {RPn+1}. Thus αn+1 is a generator of Hn+1(RPn+1), and so αk is
a generator of Hk(RPn+1) for each 0 ≤ k ≤ n+ 1 (as if for some j, α j were
not a generator of H j(RPn+1), αn+1 = α j ∪αn+1− j could not be a generator of
Hn+1(RPn+1)). Thus we recover the calculation of Lemma 5.7.4(1).

(3) We take G = Z. By a completely analogous argument, we recover the calcula-
tion of Lemma 5.7.4(2) for H∗(CPn). ♦

Example 6.4.4. Example 6.4.3(3) allows us to define a family of orientations on
complex projective spaces.

We refer to the orientations obtained in this way as the standard orientations, and
the ones with the opposite sign for [CPn] as the nonstandard orientations.

We begin with n = 1. We have the standard generator σ1 ∈ H1(S1) of
Remark 4.1.10.

To define an orientation of CP1 it suffices to give a local orientation ϕz0
at a

single point z0, and we choose z0 to be the point with homogeneous coordinates
[0,1]. We specify ϕz0

by letting ϕz0
(1) be the image of σ1 under the sequence of

isomorphisms

H1(S
1)−→ H1(C−{0})−→ H2(C,C−{0})−→ H2(CP1,CP1 −{[0,1]}).

Here the first isomorphism is induced by inclusion, the second is the inverse of the
boundary map in the exact sequence of the pair (C,C−{0}), and the third is induced
by the map z �→ [z,1].

Given this orientation we have a fundamental class [CP1] ∈ H2(CP1), and we
let α = {CP1} be the fundamental cohomology class. Then for n > 1, we choose
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the orientation which has {CPn} = αn as fundamental cohomology class, i.e.,
the orientation with fundamental class [CP1] specified by e(αn, [CPn]) = 1.

We then write CPn for CPn the oriented manifold with the standard orientation
and CPn for CPn the oriented manifold with the nonstandard orientation.

(The standard orientations may be obtained directly by specifying local orien-
tations in a completely analogous manner, beginning with the standard generator
σ2n−1(S2n−1), but for our purposes the homological description is much more to the
point.) ♦
Theorem 6.4.5. Let M be a compact n-dimensional manifold with n odd. Then the
Euler characteristic χ(M) = 0.

Proof. We may use any coefficients to compute the Euler characteristic, so we
choose Z/2Z. This means that M is orientable with these coefficients. Also, they
form a field, so for any j, Hj(M;Z/2Z) and H j(M;Z/2Z) are dual vector spaces
and hence have the same dimension. Let n = 2m+ 1. We compute

χ(M) =
n

∑
j=0

(−1) j dimHj(M;Z/2Z)

=
m

∑
j=0

(−1) j dimHj(M;Z/2Z)+
2m+1

∑
k=m+1

(−1)k dimHk(M;Z/2Z).

But by Poincaré duality

2m+1

∑
k=m+1

(−1)k dimHk(M;Z/2Z) =
2m+1

∑
k=m+1

(−1)k dimH2m+1−k(M;Z/2Z)

=
2m+1

∑
k=m+1

(−1)k dimH2m+1−k(M;Z/2Z)

=
m

∑
j=0

(−1)2m+1− j dimHj(M;Z/2Z)

where j = 2m+ 1− k (and so k = 2m+ 1− j).
Thus

χ(M) =
m

∑
j=0

((−1) j +(−1)2m+1− j)dimHj(M;Z/2Z).

But (−1) j and (−1)2m+1− j always have opposite signs, so this sum is identically
zero. ��

Now we have an interesting application of Lefschetz duality.

Theorem 6.4.6. Let M be a compact n-manifold with odd Euler characteristic.
Then M is not the boundary of a compact (n+ 1)-manifold.
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Proof. Suppose that M is the boundary of the compact (n+1)-manifold X . Consider
the exact sequence of the pair (X ,M):

0 −→ Hn+1(X ;Z/2Z)−→ Hn+1(X ,M;Z/2Z)−→ Hn(M;Z/2Z)−→
·· · −→ H0(M;Z/2Z) −→ H0(X ;Z/2Z)−→ H0(X ,M;Z/2Z)−→ 0.

Then the alternating sum of the dimensions of the homology groups in this
sequence is zero, and hence the sum of the dimensions is even. Thus

n

∑
k=0

dimHk(M;Z/2Z)+
n+1

∑
k=0

dimHk(X ;Z/2Z)

+
n+1

∑
k=0

dimHk(X ,M;Z/2Z)≡ 0 (mod 2).

But, on the other hand,

χ(M) =
n

∑
k=0

(−1)k dimHk(M;Z/2Z)≡
n

∑
k=0

dimHk(M;Z/2Z) (mod 2),

and on the other hand, by Lefschetz duality,

n+1

∑
k=0

dimHk(X ;Z/2Z) =
n+1

∑
k=0

dimHk(X ,M;Z/2Z)

since for every value of k,

dimHk(X ;Z/2Z) = dimHn+1−k(X ,M;Z/2Z) = dimHn+1−k(X ,M;Z/2Z).

Thus χ(M) is even, a contradiction. ��
Now we turn our attention to orientable manifolds. We will be considering an

important invariant, the intersection form. In order to most conveniently do that we
introduce some (nonstandard) notation.

Definition 6.4.7. Let M be a compact connected manifold of dimension 2n. Then

Kn(M;Z) = Hn(M;Z)/Hn(M;Z)tor,

i.e., the quotient of Hn(M;Z) by its torsion subgroup, and

Kn(M;F) = Hn(M;F)

if F is a field. ♦
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Theorem 6.4.8. Let M be a G-oriented compact connected manifold of even
dimension 2n, with fundamental class [M] ∈ H2n(M;G), where G = Z or a field F.
Then

〈 , 〉 : Kn(M;G)⊗Kn(M;G) −→ G

given by

〈u,v〉= e(u∪ v, [M])

is a nonsingular bilinear form. It is symmetric if n is even, i.e., if dim(M) ≡
0 (mod 4), and is skew-symmetric if n is odd, i.e., if dim(M)≡ 2 (mod 4).

Proof. First observe that this form is symmetric for n even and skew-symmetric for
n odd as we have u∪ v = (−1)n2

(v∪u).
Suppose that G = F is a field. By Poincaré duality,

∩[M] : Hn(M;F) −→ Hn(M;F)

is an isomorphism.
By the universal coefficient theorem, Theorem 5.5.19,

e : Hn(M;F) −→ Hom(Hn(M;F),F).

is an isomorphism. Hence the composition

e(∩[M]) : Hn(M;F) −→ Hom(Hn(M;F),F).

is an isomorphism. But this composition is given by, using Theorem 5.6.13(7),

e(∩[M])(v)(u) = e(u,v∩ [M]) = e(u∪ v, [M]).

In the language of Definition B.1.3, this shows that the map β for this form is an
isomorphism, and then by Remark B.1.6 we have that the form is nonsingular.

Now consider the case G = Z. First note that this bilinear form is well-defined
on Kn(M;Z)⊗Kn(M;Z), as if u is a torsion class, with ru = 0, say, and v is any
class, then 0 = 0∪v = (ru)∪v = r(u∪v) so u∪v = 0 as H2n(M;Z) is a free abelian
group, and similarly for v∪u.

Write Hn(M;Z) as F ⊕ T when F is a free abelian group and T is the torsion
subgroup. (F is in general not unique, but simply make a choice). Then under the
projection Hn(M;Z)→ Kn(M;Z), F is mapped isomorphically onto Kn, and indeed
this projection is an isometry between the restriction of 〈 , 〉 to F ⊗F and 〈 , 〉 on
Kn(M;Z)⊗Kn(M;Z).
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Now by Poincaré duality

∩[M] : Hn(M;Z) −→ Hn(M;Z)

is an isomorphism, so if F ′ is the image of F under this isomorphism, we have
Hn(M;Z) = F ′ ⊕T ′ where T ′ is its torsion subgroup.

By the universal coefficient theorem, Theorem 5.5.19,

e : Hn(M;Z) −→ Hom(Hn(M;Z),Z)

is an isomorphism, i.e.,

e : F ′ ⊕T ′ −→ Hom(F ⊕T,Z)

is an isomorphism. But Hom(T,Z) = 0, and Hom(F,Z) is free, so the only map
T ′ → Hom(F,Z) is the 0 map. Thus

e : F ′ −→ Hom(F,Z)

is an epimorphism. But this is a map between free abelian groups of the same rank,
so it must be an isomorphism. Then we complete the argument exactly as in the field
case. ��
Definition 6.4.9. The abelian form 〈 , 〉 of Theorem 6.4.8 is the intersection form
of M. ♦
Definition 6.4.10. Let M be a compact connected oriented manifold of dimension
2n for n even. The signature (or index) σ(M) is the signature of the intersection
form of M on H2n(M;R)⊗H2n(M;R) as defined in Definition B.2.6. ♦

Theorem 6.4.8 is true for arbitrary compact connected manifolds with Z/2Z
coefficients, but is not very useful. However, in the oriented case, it is extremely
useful, as we now see.

Corollary 6.4.11. Let M be a compact connected oriented manifold of dimension
2n, n odd. Then for G = Z or any field F of characteristic not equal to 2,
rank(Kn(M;G)) is even. Also, the Euler characteristic χ(M) is even.

Proof. By Theorem 6.4.8, 〈 , 〉 is a nonsingular skew-symmetric bilinear form on
Kn(M;G), so by Theorem B.2.1, Kn(M;G) must have even rank.

We may use any field to compute Euler characteristic. Choosing F=Q, say, and
using Poincaré duality, a short calculation shows

χ(M) =
2n

∑
k=0

(−1)k dimHk(M;Q)

= 2

(
n−1

∑
k=0

(−1)k dimHk(M;Q)

)

− dimHn(M;Q)

which is even. ��
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Definition 6.4.12. (1) Two compact connected oriented n-manifolds M and N with
fundamental classes [M] and [N] are of the same oriented homotopy type (resp.
same oriented homeomorphism type) if there is a homotopy equivalence (resp.
a homeomorphism) f : M → N with f∗([M]) = [N].

(2) If M is a compact connected orientable manifold then a homotopy equivalence
(or a homeomorphism) f : M → M is orientation preserving (resp. orientation
reversing) if f∗ : Hn(M;Z) → Hn(M;Z) is multiplication by 1 (resp. by −1).
♦

Corollary 6.4.13. Let M be a compact connected oriented n-manifold. The isomor-
phism class of the intersection form on M is an invariant of the oriented homotopy
type of M.

The finest information comes from considering the intersection form over Z, but
that may lead to difficult algebraic questions. However, the information provided by
the intersection form over R is still enough to obtain interesting results.

Corollary 6.4.14. Let M be a compact connected oriented manifold of dimension
2n with n even. If the signature σ(M) �= 0, then there is no orientation-reversing
homotopy equivalence (and hence no orientation-reversing homeomorphism) f :
M → M.

Theorem 6.4.15. Let M be a compact connected oriented manifold of dimension 2n
with n even. If the signature σ(M) �= 0, then M is not the boundary of an oriented
(2n+ 1)-manifold.

Proof. Suppose that M is the boundary of X2n+1. Let V = Hn(M2n;R), and let
V have dimension t. We will use Lefschetz duality to find a subspace V0 of V of
dimension t/2 with the restriction of the intersection form on M to V0 identically 0.
By Lemma B.2.8, this shows that σ(M) = 0. (This also shows that if t is odd, M
is not the boundary of an oriented (2n+ 1)-manifold, but this is implied by our
hypothesis, as if t is odd, σ(M) must be nonzero.)

Consider the diagram (we omit the coefficients R)

H n(X ) i∗

∼=

H n(M ) δ

∼=

H n+1(X,M )

∼=

Hn+1(X,M ) ∂
Hn(M )

i∗
Hn(X )

which is commutative up to sign and where the vertical maps are isomorphisms.
Then

dimHn(M) = dimHn(M) = dimKer(i∗)+ dimIm(i∗)

= dimKer(δ )+ dimIm(i∗)

= dimIm(i∗)+ dimIm(i∗).
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But we have the commutative diagram of Theorem 5.5.12

H n(X )

i∗

Hom(Hn(X ),R)

Hom(i∗ ,1)

H n(M ) Hom(Hn(M ),R)

with the horizontal maps isomorphisms, and this implies that

dimIm(i∗) = dimIm(i∗).

Thus we conclude that V0 = Im(i∗) is a subspace of V = Hn(M) with dimV0 =
(1/2)dimV . Now we must investigate the cup product on V0.

Recall that i∗([M]) = 0 ∈ H2n(X) by Corollary 6.2.36.
Now let α,β ∈V0 so that α = i∗(γ) and β = i∗(δ ) for γ,δ ∈ Hn(X). Then

〈α,β 〉= 〈α ∪β , [M]〉= 〈i∗(γ)∪ i∗(δ ), [M]〉
= 〈i∗(γ ∪δ ), [M]〉 = 〈γ ∪δ , i∗([M])〉
= 〈γ ∪δ ,0〉= 0

completing the proof. ��
In order to give examples for these two theorems we consider the connected sum

construction of oriented manifolds, a construction that is important in its own right.
The basic idea is very simple, but we will have to exercise some care to ensure that
the orientation comes out right.

Definition 6.4.16. Let M and N both be compact connected oriented n-manifolds,
n > 0, with fundamental classes [M] and [N] respectively. Let ϕα : Rn → Uα be a
coordinate patch on M and ψβ : Rn →Vβ be a coordinate patch on N. Let D̊n be the
open unit ball in R

n and let Sn−1 be the unit sphere in R
n. Let M′ = M−ϕα(D̊n) and

observe that M′ is a manifold with boundary ∂M = ϕ(Sn−1) homeomorphic to Sn−1.
We have isomorphisms on homology

Hn(M)−→ Hn(M,ϕα (D̊
n))−→ Hn(M

′,∂M′)

where the first isomorphism comes from the inclusion of pairs (M, /0) →
(M,ϕα (Dn)) and the second is the inverse of excision. (Note we can apply excision
here by Theorem 3.2.7.) Let [M′,∂M′] be the fundamental class of the manifold
with boundary M′ which is the image of the fundamental class [M] of M under this
isomorphism, and let [∂M′] = ∂ ([M′,∂M′]) ∈ Hn−1(∂M′). Define N′, [N′,∂N′], and
[∂N′] similarly.

Let C = Sn−1× [−1,1]. Let i j : Sn−1 → Sn−1×{ j}⊂C for j =−1,0 or 1. Choose
a fundamental class [Sn−1] ∈ Hn−1(Sn−1) and let [Sn−1

0 ] = (i0)∗([Sn−1]) ∈ Hn−1(C)
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and [Sn−1
j ] = (i j)∗([Sn−1]) ∈ Hn−1(Sn−1 ×{ j}) for j =−1 or 1. Observe that under

the inclusions Sn−1 ×{ j}→C, the image of [Sn−1
j ] is [Sn−1

0 ], j =−1,1. Choose the

fundamental class [C,∂C]∈Hn(C,∂C) so that [∂C] = ∂ ([C,∂C]) = [Sn−1
1 ]− [Sn−1

−1 ]∈
Hn−1(∂C).

Now let f−1 : Sn−1 ×{−1}→ ∂M′ be a homeomorphism with ( f−1)∗([Sn−1
−1 ]) =

[∂M′] ∈ Hn−1(∂M′) and let f1 : Sn−1 × {1} → ∂N′ be a homeomorphism with
( f1)∗([Sn−1

1 ]) =−[∂N′] ∈ Hn−1(∂N′). The connected sum M#N is the identification
space

M#N = M′ ∪N′ ∪C/∼

under the identification (s,−1)∼ f−1(s) and (s,1)∼ f1(s) for s ∈ Sn−1.
M#N is clearly a manifold and we give it the orientation with fundamental

class [M#N] as described in Theorem 6.4.17 below, making it into an oriented
manifold. ♦

There are many choices that went into the construction of M#N, but in fact M#N
is well-defined up to oriented homeomorphism type.

We summarize the (co)homological properties of the connected sum in the
following theorem.

Theorem 6.4.17. Let M and N be compact connected oriented n-manifolds, n > 0,
with fundamental classes [M] and [N] respectively. Then

Hn(M#N)∼= Hn(M#N)∼= Z

Hj(M#N)∼= Hj(M)⊕Hj(N)

H j(M#N)∼= H j(M)⊕H j(N)

}

for 1 ≤ j ≤ n− 1

H0(M#N)∼= H0(M#N)∼= Z.

There is a fundamental class [M#N] ∈ Hn(M#N) with image [M′,∂M′] under the
isomorphism

Hn(M#N)−→ Hn(M#N,M#N −M′)−→ Hn(M
′,∂M′)

and with image [N′,∂N′] under the isomorphism

Hn(M#N) −→ Hn(M#N,M#N −N′)−→ Hn(N
′,∂N′).

Under the isomorphisms above, the cup product structure on M#N is as follows:

Let (α,γ) ∈ H j(M)⊕H j(N)

and (β ,δ ) ∈ Hk(M)⊕Hk(N).
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For j,k > 0 and j+ k < n,

(α,γ)∪ (β ,δ ) = (α ∪β ,γ ∪δ ) ∈ H j+k(M)⊕H j+k(N).

For j,k > 0 and j+ k = n,

e((α,γ)∪ (β ,δ ), [M#N]) = e(α ∪β , [M])+ e(γ ∪δ , [N]),

i.e., if α ∪β = x{M} and γ ∪δ = y{N}, then

(α,γ)∪ (β ,δ ) = (x+ y){M#N}.

In particular, if 〈 , 〉 is the intersection form on M, 〈 , 〉′ the intersection form on
N, and 〈 , 〉′′ the intersection form on M#N, then

〈 , 〉′′ = 〈 , 〉⊕ 〈 , 〉′.

Proof. We work in cohomology as we wish to obtain the cup product structure. The
argument in homology is very similar.

Consider the disjoint union M ∪ N of M and N. Then it is certainly true that
H j(M ∪N) ∼= H j(M)⊕H j(N) for every j, and that the cup product on M ∪N is
given by, using this direct sum decomposition,

(α,0)∪ (β ,0) = (α ∪β ,0)

(0,γ)∪ (0,δ ) = (0,γ ∪δ )

(α,0)∪ (0,δ ) = (0,0)

(0,γ)∪ (β ,0) = (0,0)

for all cohomology classes, which is the multiplication

(α,γ)∪ (β ,δ ) = (α ∪β ,γ ∪δ )

for all cohomology classes.
Next we have the identification map i : M ∪ N → M ∨ N, which induces an

isomorphism on cohomology in all positive dimensions, and hence gives the same
product structure on cohomology in positive dimensions. This is just the identity
i∗(μ)∪ i∗(ν) = i∗(μ ∪ν).

Consider the exact sequence of the pair (M,M′). We see, using excision,

H j+1(M,M )
∼=

H j (M ) H j (M ) H j (M,M )
∼=

H j+1(Dn ,S n−1) H j (Dn ,S n−1)
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so H j(M)→ H j(M′) is an isomorphism for j < n−1, and an injection for j = n−1.
But we also have the exact sequence

Hn(M′)←− Hn(M)←− Hn(M,M′)←− Hn−1(M′)←− Hn−1(M)

We have that Hn(M)∼= Z and Hn(M,M′)∼= Z. But M′ is a manifold with boundary,
so by Lefschetz duality Hn(M′)∼= H0(M′,∂M′) = 0 as the map H0(∂M′)→ H0(M′)
is surjective (in fact, an isomorphism).

Hence the map Hn(M,M′)→ Hn(M) is an isomorphism, and in particular is an
injection, so H j(M) → H j(M′) is also a surjection for j = n − 1, and hence an
isomorphism.

Of course, the map H j(N) → H j(N′) is an isomorphism for all j ≤ n− 1 by
exactly the same argument.

Let M′′ = M′ ∪ Sn−1 × [−1,0] ⊂ M#N and let N′′ = N′ ∪ Sn−1 × [0,1] ⊂ M#N.
Then M′ is a strong deformation retract of M′′ and N′ is a strong deformation retract
of N′′, so the inclusions/retractions induce isomorphisms on cohomology. (In fact,
M′′ is homeomorphic to M′ and N′′ is homeomorphic to N′.) Also, M#N = M′′ ∪N′′
and M′′ ∩N′′ = Sn−1 ×{0}.

Finally, observe that there is a natural map p : M#N → M ∨ N obtained by
identifying Sn−1 ×{0} to the point q = M∩N ∈ M∨N.

Here is a picture of the various spaces involved.

q
M∨N

M#N

M N∪

With all these preliminaries out of the way, we have a commutative diagram of
Mayer-Vietoris sequences

Hj (q) Hj (M)⊕Hj (N) Hj (M ∪N) Hj−1(q) Hj−1(M)⊕Hj−1(N)

Hj (Sn−1×{0}) Hj (M )⊕Hj (N ) Hj (M#N) Hj−1(Sn−1×{0}) Hj−1(M )⊕Hj−1(N )

For j ≥ 1 and j < n− 1, the first, second, fourth, and fifth vertical arrows are
isomorphisms, and hence, by the five lemma, Lemma A.1.8, so is the third.

In case j = n − 1, consider the map in the lower left-hand corner. Note that
Sn−1 × {0} is the boundary of both M′′ and N′′, so the maps Hn−1(M′′) →
Hn−1(Sn−1 ×{0}) and Hn−1(N′′) → Hn−1(Sn−1 ×{0}) are both the 0 map by the
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dual of Corollary 6.2.36. Hence we may replace Hn−1(Sn−1×{0}) by the zero group
and apply the five lemma once again.

Now consider the case j = n. We have the lower sequence

←− Hn(M#N)←− Hn−1(Sn−1 ×{0})←− Hn−1(M′′)⊕Hn−1(N′′)

Hn(M′′)⊕Hn(N′′)

We have just observed that the right-hand map is the zero map. Also, we observed
earlier that Hn(M′′) = 0 and Hn(N′′) = 0 and hence Hn(M′′) = 0 and Hn(N′′) = 0.
Thus Hn(M#N)∼= Z.

Let {M} denote the fundamental cohomology class of M. Consider the sequence

Hn(M)
∼=←−−Hn(M,D)

∼=−−→Hn(M′,∂M′)
∼=←−−Hn(M#N,N′′)

∼=−−→Hn(M#N).

The first map is certainly an isomorphism, the next two are excisions, and the
last map is a map in the exact sequence of the pair (M#N,N′′) whose next term
is Hn(N′′) = 0. Thus it is a surjection from Z to Z and hence an isomorphism.
The image of {M} in the intermediate group is the fundamental cohomology class
{M′,∂M′} and its image in the right-hand group is the fundamental cohomology
class {M#N}. Similarly the image of {N} is {M#N}. (These follow because of our
choices of orientations.)

Now we have the same argument that the cup product structures on H∗(M ∨N)
and H∗(M#N) are isomorphic for cohomology classes of dimensions j and k with
j,k > 0 and j+k< n. If μ ∈H j(M#N) and ν ∈Hk(M#N), then p∗ : Hi(M#N)→
Hi(M∨N) is an isomorphism for i = j,k, j+ k, and p∗(μ)∪ p∗(ν) = p∗(μ ∪ν).

If j + k = n, consider a class p∗(α,0) in H j(M#N) and a class p∗(0,γ) in
Hk(M#N). Then p∗(α,0)∪ p∗(0,γ) = p∗((α,0)∪ (0,γ)) = p∗(0) = 0 as (α,0)∪
(0,γ) = 0 ∈ H j+k(M∨N). Similarly p∗(0,β )∪ p∗(γ,0) = 0.

Again with j+k = n, consider a class p∗(α,0)∈H j(M#N) and a class p∗(β ,0)∈
Hk(M#N). Suppose α ∪ β = x{M} ∈ Hn(M). Then p∗(α,0)∪ p∗(β ,0) = p∗(α ∪
β ,0) = p∗(x{M},0) = x{M+N}. Similarly for p∗(0,γ)∈ H j(M#N) and p∗(0,δ )∈
Hk(M#N) with γ ∪δ = y{N} we have p∗(0,γ)∪ p∗(0,δ ) = y{M+N}, and we are
done. ��
Example 6.4.18. Let n be even. We adopt the notation and language of
Example 6.4.4.

In the basis of Hn(CPn) consisting of the element αn/2, intersection form of
the oriented manifold CPn has matrix [1], so H(CPn) has rank 1 and signature
σ(CPn) = 1, while the intersection form of the oriented manifold CPn has matrix
[−1], so CPn has signature σ(CPn) =−1.

Then for nonnegative integers r and s,

M = CPn# · · ·#CPn#CPn# · · ·#CPn,
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where there are r copies of CPn and s copies of CPn, is a (2n)-manifold with rank
Hn(M) = r+ s and signature σ(M) = r− s. ♦

6.5 Exercises

Exercise 6.5.1. (a) A manifold is defined to be a topological space (i) in which
every point has a neighborhood homeomorphic to R

n, for some fixed n, (ii)
which is Hausdorff, and (iii) which is separable. Give examples of spaces
satisfying any two of these properties but not the third.

(b) Show that if M is compact, then (i) implies (iii).

Exercise 6.5.2. Let f : (M,∂M) → (N,∂N) be a homeomorphism. Show that f :
int(M)→ int(N) and f : ∂M → ∂N.

Exercise 6.5.3. Show that every connected manifold is homogeneous, i.e., that
if M is a connected manifold and x and y are any two pairs of M, there is a
homeomorphism f : M → M with f (x) = y. (Note this implies that if M and N
are connected manifolds, M∨N is well-defined up to homeomorphism.)

Exercise 6.5.4. Let M and N be manifolds of dimension n ≥ 1, and let M ∨N be
formed from M and N by identifying x ∈ M with y ∈ N. Call this identification
point z. Suppose that f : M∨N →M∨N is any homeomorphism. Show that f (z) = z.

Exercise 6.5.5. Let M and N be connected manifolds. Describe H∗(M ∨ N),
H∗(M∨N), and the ring structure on H∗(M∨N), in terms of H∗(M), H∗(N), H∗(M),
H∗(N), and the ring structures on H∗(M) and H∗(N).

Exercise 6.5.6. Prove Corollary 6.2.31.

Exercise 6.5.7. Let M and N be manifolds. Show that M ×N is orientable if and
only if both M and N are orientable.

Exercise 6.5.8. Let M and N be manifolds. Express the first Stiefel-Whitney class
w1(M×N) in terms of w1(M) and w1(N).

Exercise 6.5.9. Let M be an n-manifold and suppose H∗(M) �= H∗(Sn). Show that
the suspension ΣM of M is not a manifold. (Of course, ΣSn is a manifold as it is
homeomorphic to Sn+1.)

Exercise 6.5.10. Let f : X → X . The mapping torus Tf of f is the quotient space
X × I/∼ where ∼ is the identification of ( f (x),1) with (x,0) for every x ∈ X . If X
is an n-manifold and f is a homeomorphism, show that Tf is an (n+ 1)-manifold.

Exercise 6.5.11. Let f : Sn → Sn be a homeomorphism. Find H∗(Tf ), H∗(Tf ), and
the ring structure on H∗(Tf ).

Exercise 6.5.12. Let f : M → M be a homeomorphism, where M is an
n-manifold.
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(a) If M is nonorientable, show that Tf is nonorientable.
(b) If M is oriented, show that Tf is orientable if and only if f is orientation-

preserving (i.e., if f∗([M]) = [M]).

Exercise 6.5.13. Let M and N be connected compact oriented n-manifolds, and let
f : M →N. Then f∗([M]) = d[N] for some integer d. This integer is called the degree
of f . If f has nonzero degree, show that N = f (M) (i.e., that for every y0 ∈ N, there
is an x0 ∈ M with f (x0) = y0).

Exercise 6.5.14. Let M and N be compact connected manifolds of dimension n and
let f : M →N. Suppose there is some point y0 ∈N such that f−1(y0) = {x0}, a single
point of M. Suppose furthermore that y0 has an open neighborhood V such that, if
U = f−1(V ), f : U →V is a homeomorphism.

(a) Show that f∗ : Hn(M;Z2)→ Hn(N;Z2) is an isomorphism.
(b) If M and N are both oriented, show that f has degree ±1.

Exercise 6.5.15. (a) Let M be a compact connected n-dimensional manifold. Show
there is a map f : M → Sn with f∗ : Hn(M;Z2)→ Hn(Sn;Z2) an isomorphism.

(b) Let M be a compact connected oriented n-manifold. Let Sn be oriented. Show
there is a degree 1 map f : Mn → Sn.

Exercise 6.5.16. (a) Let M and N be compact connected n-manifolds and let f :
M → N be a map with f∗ : Hn(M;Z2) → Hn(N;Z2) an isomorphism. Show
that f∗ : Hk(M;Z2) → Hk(N;Z2) is onto for every k, and f ∗ : Hk(N;Z2) →
Hk(M;Z2) is 1− 1 for every k.

(b) Let M and N be compact connected oriented n-manifolds and let f : M → N be
any map of degree 1. Show that f∗ : Hk(M;Z) → Hn(N;Z) is onto for every k,
and f ∗ : Hk(N;Z)→ Hk(M;Z) is 1− 1 for every k.

(c) Let M and N be compact connected oriented n-manifolds and let f : M →N be a
map of nonzero degree d. Let F be any field of characteristic 0 or characteristic
relatively prime to d. Show that f∗ : Hk(M;F) → Hk(N;F) is onto for every k,
and f ∗ : Hk(N;F)→ Hk(M;F) is 1− 1 for every k.



Chapter 7
Homotopy Theory

Let X be a space and let x0 be a point in X . In section 2.1 we introduced the
fundamental group π1(X ,x0). In this chapter we introduce the homotopy groups
πn(X ,x0) for every n ≥ 0. Also, if (X ,A,x0) is a triple, i.e., if A is a subspace of X
and x0 is a point in A, we have the relative homotopy groups πn(X ,A,x0) for every
n ≥ 1.

Actually, what we have said is not quite precise, as π0(X) and π1(X ,A,x0) do
not have a group structure. Instead they are pointed sets. Thus we digress a bit to
discuss pointed sets.

A pointed set S is a nonempty set with a distinguished element s0 ∈ S.
If S and T are pointed sets with distinguished elements s0 and t0 respectively,

then a map of pointed sets f : S → T is a function f : S → T with f (s0) = t0.
In this situation,

Ker( f ) = {s ∈ S | f (s) = t0}
Im( f ) = {t ∈ T | t = f (s) for some s ∈ S}.

Our language and some of the details of our constructions in this chapter will
differ here than in Chap. 2, but we leave it to the reader to check that for n = 1, what
we are doing here agrees with what we did there.

7.1 Definitions and Basic Properties

We first establish some conventions and notation we will use throughout this
chapter:

(X ,x0) always denotes a nonempty space X and a point x0 ∈ X , and X0 denotes
the path component of X containing x0.

(X ,A,x0) always denotes a nonempty space X , a nonempty subspace A of X , and
a point x0 ∈ A.

© Springer International Publishing Switzerland 2014
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In is the unit cube in R
n, In = {(t1, . . . , tn) | 0 ≤ ti ≤ 1, i = 1, . . . ,n}. Its boundary

∂ In = {(t1, . . . , tn) | ti = 0 or 1 for some i}, and ∂ In = Jn−1 ∪Kn−1 where Jn−1 =
{(t1, . . . , tn) | t1 = 1} and Kn−1 is the closure of the complement of Jn−1 in ∂ In. We
call Jn−1 the front of ∂ In and Kn−1 the rear.

(Note that ∂ I1 = {0}∪{1} with J0 = {1} and K0 = {0}.)

Definition 7.1.1. For n = 0, πn(X ,x0) is the set of homotopy classes of maps α :
(∂ I1,K0) → (X ,x0). For n ≥ 1, πn(X ,x0) is the set of homotopy classes of maps
α : (In,∂ In)→ (X ,x0).

For n ≥ 1, πn(X ,A,x0) is the set of homotopy classes of maps α :
(In,Jn−1,Kn−1)→ (X ,A,x0). ♦

Analogously with our construction of the fundamental group, we may identify
(In/∂ In,∂ In/∂ In) with (Sn,1) and under this identification we see that πn(X ,x0) is
the set of homotopy classes of maps f : (Sn,1)→ (X ,x0), for n ≥ 1.

Under this identification f represents the trivial element of πn(X ,x0) if f extends
to f̄ : (Dn+1,1) → (X ,x0). However, note that the “obvious” homotopy to the
constant map provided by this extension is not the correct one, as it is not a
homotopy rel {1}. The correct homotopy is F : (Dn+1,1)× I → (X ,x0) given as
follows: Let it : Sn → Dn+1 by it(x1, . . . ,xn+1) = (1− t)(x1, . . . ,xn+1)+ (t,0, . . . ,0).
(The image of Sn under it is a sphere of radius 1 − t centered at the point
(t,0, . . . ,0). Also, it(1,0, . . . ,0) = (1,0, . . . ,0) for every t.) Then F(x1, . . . ,xn+1, t) =
f̄ (it (x1, . . . ,xn+1)).

Similarly we may regard πn(X ,A,x0) as the group of homotopy classes of maps
f : (Dn,Sn−1,1)→ (X ,A,x0) for n ≥ 2.

We observe that π0(X ,x0) and π1(X ,A,x0) are pointed sets with distinguished
element the homotopy class of the constant map to x0.

Lemma 7.1.2. π0(X ,x0) is isomorphic to the set of path components of X, with
distinguished element X0.

We now put a group structure on πn(X ,x0) for n≥ 1 and on πn(X ,A,x0) for n≥ 2.
In the following pictures heavy points, lines, or regions mark points that map to the
basepoint x0.

Definition 7.1.3. The group structure on πn(X ,x0) for n ≥ 1 and on πn(X ,A,x0) for
n ≥ 2 is given by “following”:

For n = 1 the product of

• •α and • •β is • ••α β

For n = 2 the composition of

α and β is
α

β

.
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(In the case of π2(X ,x0) the front face is also heavy, while in the case of
π2(X ,A,x0) it is not.)

Similarly for n > 2. ♦
Lemma 7.1.4. For n ≥ 2, πn(X ,x0) is an abelian group. For n ≥ 3, πn(X ,A,x0) is
an abelian group.

Proof. Here is a picture of a homotopy between αβ and β α in case n = 2, for
πn(X ,x0).

α

β

α

β

α

β

α
β

β
α

β

α

β

α

β

α

.

Similarly for n > 2 for πn(X ,x0) and for n ≥ 3 for πn(X ,A,x0). ��
Definition 7.1.5. The boundary map ∂ : πn(X ,A,x0) → πn−1(A,x0) is defined as
follows: Let α : (In,Jn−1,Kn−1)→ (X ,A,x0) represent an element of πn(X ,A,x0).
If n = 1, let i : ∂ I1 → I1 be the inclusion, and observe that i(K0) = K0. Then ∂α is
the homotopy class of the map αi : (∂ I1,K0) → (A,x0). If n ≥ 2, let i : In−1 → In

by i(t1, . . . , tn−1) = (1, t1, . . . , tn−1), and observe that i(In−1) = Jn−1 and i(∂ In−1)⊆
Kn−1. Then ∂α is the homotopy class of the map αi : (In−1,∂ In−1)→ (A,x0). ♦
Definition 7.1.6. Let f : (X ,x0) → (Y,y0) be a map. The map f induces f∗ :
πn(X ,x0)→ πn(Y,y0) by composition, i.e., if α : (∂ I1,K0)→ (X ,x0) represents an
element of π0(X ,x0), or α : (In,∂ In) → (X ,x0) represents an element of πn(X ,x0)
for n ≥ 1, then f∗(α) is the homotopy class of the map f α . Similarly a map
f : (X ,A,x0)→ (Y,B,y0) induces f∗ : πn(X ,A,x0)→ πn(Y,B,y0). ♦
Lemma 7.1.7. For n ≥ 1, f∗ : πn(X ,x0) → πn(Y,y0) is a group homomorphism,
and for n≥ 2, f∗ : πn(X ,A,x0)→πn(Y,B,y0) is a group homomorphism. Also, f∗ :
π0(X ,x0)→π0(Y,y0) and f∗ : π1(X ,A,x0)→π1(Y,B,y0) are maps of pointed sets.

Lemma 7.1.8. The inclusion (X0,x0)→ (X ,x0) induces isomorphisms πn(X0,x0)→
πn(X0,x0) for every n≥ 1, and isomorphisms πn(X0,X0 ∩ A,x0)→ πn(X ,A,x0) for
every n ≥ 1.

We have the following basic properties of homotopy groups (compare the
Eilenberg-Steenrod axioms for homology): In parts (1), (2), and (5) we only state
these for relative homotopy groups, but this also includes the absolute case, as
πn(X ,x0,x0) = πn(X ,x0) for n ≥ 1, and in this special case we define π0(X ,x0,x0)
to be π0(X ,x0).
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Theorem 7.1.9. (1) If f : (X ,A,x0) → (X ,A,x0) is the identity map, then f∗ :
πn(X ,A,x0)→ πn(X ,A,x0) is the identity map.

(2) If f : (X ,A,x0)→ (Y,B,y0) and g : (Y,B,y0)→ (Z,C,z0), and h is the composi-
tion h = g ◦ f , h : (X ,A,x0)→ (Z,C,z0), then h∗ = g∗ ◦ f∗.

(3) If f : (X ,A,x0)→ (Y,B,y0) then the following diagram commutes:

πn(X,A,x0)

∂

f∗
πn(Y,B,y 0)

∂

πn−1(A,x0)
(f |A)∗

πn−1(B,y0)

(4) The homotopy sequence

· · · −→ πn(A,x0)−→ πn(X ,x0)−→ πn(X ,A,x0)−→ πn−1(A,x0)

−→ ·· · −→ π1(X ,A,x0)−→ π0(A,x0)−→ π0(X ,x0)

is exact.
(5) If f : (X ,A,x0) → (Y,B,y0) and g : (X ,A,x0) → (Y,B,y0) are homotopic, then

f∗ : πn(X ,A,x0)→ πn(Y,B,y0) and g∗ : πn(X ,A,x0)→ πn(Y,B,y0) are equal.

Proof. Parts (1), (2), (3), and (5) are immediate. We leave the proof of (4) as an
exercise. ��
Remark 7.1.10. Note there is no analog of the excision property for homotopy. It is
this property that makes homology groups (relatively) easy to compute. By contrast,
homotopy groups are usually (very) hard to compute. ♦

Just as in the case of the fundamental group, we can ask about what happens
when we change base points, and the answer is very similar.

Theorem 7.1.11. Let X be a path-connected space and let x0, x1 ∈ X. Let α : I → X
be a path from x0 to x1, i.e., α(0) = x0 and α(1) = x1. Then α induces an
isomorphism α∗ : πn(X ,x0) → πn(X ,x1). Also, if α and β : I → X are homotopic
rel ∂ I, then α∗ = β∗.

Proof. Let f : (In,∂ In)→ (X ,x0) represent an element of πn(X ,x0). The following
picture shows how to obtain α∗( f )∈ πn(X ,x1) for n= 2, with the general case being
similar.

f
αα

α

α αα

αα
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By this picture we mean we follow the path α on the portion of “rays” emanating
from the center between the inner and outer boxes. ��

There is no reason to restrict ourselves to x1 �= x0. In the case x1 = x0, we have
the following.

Corollary 7.1.12. Let X be a path-connected space and let x0 ∈ X. Then the
construction of Theorem 7.1.11 gives an action of π1(X ,x0) on πn(X ,x0) for every
n. The set of equivalence classes of elements of πn(X ,x0) under this action is in 1–1
correspondence with the set of free homotopy classes of maps f : Sn → X.

Proof. The only point to note is that we are considering homotopies F : In × I → X
with the property that for every t ∈ I, F |∂ In ×{t} is a map to a single point, so this
gives us homotopies of maps f : Sn → X where the point 1 is allowed to move during
the homotopy. ��
Remark 7.1.13. Note this generalizes the case n = 1, where the action of π1(X ,x0)
on π1(X ,x0) is by conjugation. (Compare Lemma 2.1.3.) ♦
Definition 7.1.14. The space X is n-simple if the action of π1(X ,x0) on πn(X ,x0)
is trivial. ♦
Remark 7.1.15. If X is simply-connected, then X is n-simple for every n. For
example, this is the case for X = Sm for every m ≥ 2. ♦
Remark 7.1.16. If X is n-simple, then there is a canonical isomorphism from
πn(X ,x0) to πn(X ,x1): Choose α∗ for any path α from x0 to x1. Because of this, in
dealing with n-simple spaces we often drop the basepoint and write πn(X) instead
of πn(X ,x0). ♦

We have the following result about the homotopy of CW complexes.

Lemma 7.1.17. Let X be a CW complex, x0 a 0-cell in X, and let Xn be the
n-skeleton of X, for any n. Let i : Xn → X be the inclusion. Then i∗ : πk(Xn,x0) →
πk(X ,x0) is an isomorphism for k < n and an epimorphism for k = n.

7.2 Further Results

In this section we give further results on homotopy groups. These fit in naturally
with, and extend, work we have already done. Towards the beginning of this section
we give proofs that are complete, or nearly so. But, as we have said, homotopy
theory is relatively hard. We cite some classical results later in this section for the
edification of the reader, but their proofs are beyond the scope of this book.

Theorem 7.2.1. Let X and Y be path-connected spaces. Let x0 ∈ X and y0 ∈ Y .
Let p : X ×Y → X and q : X × Y → Y be projection on the first and second
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factors respectively. Then p∗ × q∗ : πn(X ×Y,(x0,y0)) → πn(X ,x0)× πn(Y,y0) is
an isomorphism for all n.

Proof. First we show p∗ ×q∗ is onto. Let f : (Sn,1)→ (X ,x0) represent an element
α of πn(X ,x0) and let g : (Sn,1) → (Y,y0) represent an element β of πn(Y,y0).
Then h : (Sn,1)→ (X ×Y,(x0,y0)) by h(t) = ( f (t),g(t)) represents an element γ of
πn(X ×Y,(x0,y0)) with p∗(γ) = α and q∗(γ) = β .

Next we show p∗ × q∗ is 1-1: Let f and g be as above and suppose h represents
the trivial element of πn(X ×Y,(x0,y0)). Then h extends to a map H : (Sn,1)× I →
(X ×Y,(x0,y0)) with H|(Sn,1)×{1} the constant map to the point (x0,y0). Then
F = p∗(H) is an extension of f with F|(Sn,1)×{1} the constant map to the point
x0, and G = q∗(H) is an extension of g with G|(Sn,1)×{1} the constant map to the
point y0. ��

Recall we introduced the notion of a covering space in Sect. 2.2.

Theorem 7.2.2. Let X be a path-connected space and let X̃ be a connected
covering space of X. Let p : X̃ → X be the covering projection. Let x̃0 ∈ X̃ and
let x0 ∈ X with p(x̃0) = x0. Then for every n ≥ 2, p∗ : πn(X̃ , x̃0) → πn(X ,x0) is an
isomorphism.

Proof. First we show p∗ is onto. Let f : (Sn,1) → (X ,x0) represent an element of
πn(X ,x0). We wish to show there is an f̃ : (Sn,1) → (X̃ , x̃0) making the following
diagram commute

X̃

p

Sn

f̃

f
X.

But, by Corollary 2.3.3, π1(Sn) = 0, so by Theorem 2.2.8, such as f̃ always exists.
Next we show p∗ is 1–1. Let f̃ : (Sn,1)→ (X̃ , x̃0) and f = p f̃ : (Sn,1)→ (X ,x0).

Suppose that f represents the trivial element of πn(X ,x0), so that f extends to
F : (Sn,1)× I → (X ,x0) with F |(Sn,1)× {1} the constant map to the point x0.
Then, by Theorem 2.2.5, there is a map F̃ : (Sn,1)× I → (X̃ , x̃0) with pF̃ = F .
In particular, F̃|(Sn,1)×{1} has image contained in p−1(x0). But p−1(x0) is a set
of discrete points, and Sn is connected, so F̃ |(Sn,1)×{1} has image a single point.
But F̃|(1,1) = x̃0 so that point is x̃0, and hence f̃ represents the trivial element of
πn(X ,x0). ��
Corollary 7.2.3. For every n ≥ 2, πn(S1,1) = 0.

Proof. We know from Example 2.2.3 that p : R → S1 by p(t) = exp(2π it) is a
covering map, so for n ≥ 2, πn(S1,1)∼= πn(R,0) = 0 as R is contractible. ��

The proof used the covering homotopy property, which for the convenience of
the reader we restate here.
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Definition 7.2.4. A map p : Y → X has the covering homotopy property if the
following holds: Let E be an arbitrary space and let F : E × I → X be an arbitrary
map. Let f̃ : E ×{0}→Y be an arbitrary map such that p f̃ (e,0) = F(e,0) for every
e ∈ E . Then f̃ extends to a map F̃ : E × I → Y with F = pF̃ , i.e., to a map making
the following diagram commute

E ×{0} f̃
Y

p

E × I

F̃

F
X.

If p : Y → X has the covering homotopy property then p is a fibration. ♦
Example 7.2.5. (1) If X and Y are any two spaces, the projection p : X ×Y → X

onto the first factor is a fibration.
(2) A covering projection p : X̃ → X is a fibration. ♦

Here is one of the most important ways fibrations arise.

Definition 7.2.6. A map p : E → B is a locally trivial fiber bundle with fiber F
if the following holds: There is a cover of E by open sets {Ui} and for each i a
homeomorphism hi : p−1(Ui)→Ui ×F making the following diagram commute

p−1(Ui)

p

hi
Ui × F

Ui Ui

where the lower horizontal map is the identity and the right-hand vertical map is
projection onto the first factor. The map p has a section s if there is a map s : B → E
with ps : B → B the identity. ♦
Example 7.2.7. (1) The projection p : X ×Y → X is a locally trivial fiber bundle

with fiber Y . (Indeed, we call this a globally trivial fiber bundle.)
(2) Every covering projection p : X̃ → X is a locally trivial fiber bundle with fiber

the discrete space p−1(x0). For example, p : Sn → RPn is a fiber bundle with
fiber two points.

(3) The map p : S2n+1 →CPn given by p(z0, . . . ,zn) = [z0, . . . ,zn] is a locally trivial
fiber bundle with fiber S1 = {z ∈ C | |z|= 1}. ♦

Theorem 7.2.8. Every locally trivial fiber bundle is a fibration.

Theorem 7.2.9. Let p : E → B be a locally trivial fiber bundle. Let b0 ∈ B,
F = p−1(b0), and e0 ∈ F. Then for every n,
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p∗ : πn(E,F,e0)−→ πn(B,b0)

is an isomorphism.

{0}× In−1 g̃
E

p

I × In−1

G

g
B

Proof. First we show p∗ is onto. Let g : (In,∂ In)→ (B,b0) represent an element of
πn(B,b0). Regard In as I×In−1. Then {0}×In−1 ⊂ ∂ In−1, so we let g̃ : {0}×In−1 →
e0. Then we can apply the covering homotopy property to obtain a commutative
diagram and hence a map G′ : (In,J′,K′) → (E,F,e0), where J′ = {0}× In−1 and
K′ is the closure of ∂ In − J′. This is almost but not quite what we need to obtain a
representation of an element of πn(E,F,e0). For that we need G : (In,Jn−1,Kn−1)→
(E,F,e0). But we may obtain such a map G by composing a homeomorphism of In

with itself with the map G′ as in the following picture, where (as usual) the heavy
lines indicate points mapped to e0:

−−−−→

Next we show p∗ is 1–1. Let g̃ : (In,Jn−1,Kn−1) → (E,F,e0) and suppose that
g = p∗(g̃) represents the trivial element of πn(B,b0). Then there is a mapping
G : (In,Jn−1,Kn−1)× I → (B,b0) extending the map g on (In,Jn−1,Kn−1)×{0}
and with G : (In,Jn−1,Kn−1)×{1}→ b0. By the covering homotopy property, there
is a map G̃ : (In,Jn−1,Kn−1)× I → E extending g̃ with pG̃ = G. In particular,
pG̃((In,Jn−1,Kn−1)×{1}) = b0, i.e., G̃(In ×{1})⊆ F . But this means that G̃, and
hence g̃, represents the trivial element of πn(E,F,e0). ��

We now have a corollary that generalizes both Theorems 7.2.1 and 7.2.2.

Corollary 7.2.10. Let p : E → B be a locally trivial fiber bundle with fiber F =
p−1(b0) and let f0 ∈ F. Then there is an exact sequence

· · · −→ πn(F, f0)−→ πn(E, f0)
p∗−−→ πn(B,b0)−→ πn−1(F, f0)−→ ·· · .

If p has a section, then for each n,

πn(E, f0)∼= πn(B,b0)×πn(F, f0).
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Proof. The first claim follows immediately from Theorems 7.1.9 and 7.2.9.
As for the second claim, if s is a section, then s∗ : πn(B,b0)→ πn(E, f0) splits p∗,

so this long exact sequence breaks up into a series of split short exact sequences. ��
Example 7.2.11. By Example 7.2.7 and Corollary 7.2.10, we have that
πk(S2n+1) ∼= πk(CPn) for every k ≥ 3. In particular, since CP1 = S2, we have
that π3(S2)∼= π3(S3). ♦
We have the following general finiteness properties of homotopy groups

Theorem 7.2.12. Let X be a connected finite CW-complex.

(a) If X is simply connected, then πn(X) is a finitely generated abelian group for
each n.

(b) In general, πn(X ,x0) is finitely generated as a Zπ1(X ,x0) module.

Example 7.2.13. Let X be the space

Then π2(X)∼= π2(X̃) where X̃ , the universal cover of X , is

and π2(X̃) is not finitely generated. ♦
Theorem 7.2.14. πi(Sn) = 0 for i < n.

Proof. Give Si a CW-structure with one cell in dimension i and one cell in
dimension 0, and give Sn a CW-structure with one cell in dimension n and one
cell in dimension 0. Let f : Si → Sn represent an element of πi(Sn). Then by
Theorem 4.2.28, f is (freely) homotopic to a cellular map g : Si → Sn. But by the
definition of a cellular map, the image of the i-skeleton of Si must be contained in
the i-skeleton of Sn, which is a point. Thus f is freely homotopic to a constant map.
But by Corollary 2.3.3 π1(Sn) = 0 for n > 1, so by Corollary 7.1.12 f is homotopic
as a map of pairs to a constant map. ��

(This proof is deceptively simple, as the proof of Theorem 4.2.28 is highly
nontrivial.)
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Theorem 7.2.15 (Hopf). Two maps f : Sn → Sn and g : Sn → Sn are homotopic if
and only if they have the same degree.

Corollary 7.2.16. For any n ≥ 1, πn(Sn)∼= Z.

Proof. By Hopf’s theorem, we have an isomorphism

πn(S
n)−→ {degrees of maps from Sn to Sn}.

But this latter set is Z by Theorem 4.2.31. ��
Hopf’s theorem has a vast generalization due to Hurewicz, which we now give.

Definition 7.2.17. The Hurewicz map θn : πn(X ,x0)→Hn(X) or θn : πn(X ,A,x0)→
Hn(X ,A) is defined as follows: Let f : (Sn,1)→ (X ,x0) represent α ∈ πn(X ,x0). Let
σn be the standard generator of Hn(Sn) as defined in Remark 4.1.10. Then

θn(α) = f∗(σn).

Similarly, if f : (Dn,Sn−1,1) → (X ,A,x0) represents α ∈ πn(X ,x0), then
θn(α) = f∗(δn). ♦

Note that θ1 : π1(X ,x0)→ H1(X) is the map θ of Sect. 5.2.

Lemma 7.2.18. The following diagram commutes:

· · · πn(A,x0)

θn

πn(X,x 0)

θn

πn( X,A,x 0)

θn

∂
πn−1(A,x0)

θn−1

· · ·

· · · Hn(A) Hn(X ) Hn(X,A ) ∂
Hn−1(A) · · ·

Theorem 7.2.19 (Hurewicz). Let X be a path-connected space. For any fixed
integer n ≥ 2 the following are equivalent:

(a) π1(X) = 0 and Hk(X) = 0 for k = 1, . . . ,n− 1.
(b) πk(X) = 0 for k = 1, . . . ,n− 1.

In this situation, the Hurewicz map

θn : πn(X)−→ Hn(X)

is an isomorphism.

Definition 7.2.20. The space X is n-connected if πn(X ,x0) = 0 for i < n. The
pair (X ,A) is n-connected if the map π0(A) → π0(X) is onto and πi(X ,A) = 0 for
1 ≤ i ≤ n. ♦
Recall we considered the suspension ΣX of a space X in connection with our
discussion of homology. We now consider it in connection with homotopy.
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Theorem 7.2.21. (a) For any space X, ΣX is path-connected.
(b) For any path-connected space X, ΣX is simply connected.
(c) If X is n-connected for any n ≥ 1, then ΣX is (n+ 1)-connected.

Proof. (a) is trivial and (b) follows from van Kampen’s theorem. (c) is a conse-
quence of Theorem 3.2.13 and Hurewicz’s theorem. ��

Now let f : X → Y be arbitrary. Then we have the map Σ f : ΣX → ΣY .
In particular we may let X = Sk, so f : Sk → Y gives Σ f : ΣSk → Y , and we may
naturally identify ΣSk with Sk+1. Clearly if f and g are homotopic, so are Σ f and Σg,
and so we obtain a map Σ : πk(Y,y0)→ πk+1(ΣY,y0).

Theorem 7.2.22 (Freudenthal suspension theorem). Let n ≥ 2 and suppose that
Y is (n− 1)-connected. Then Σ : πk(Y )→ πk+1(Y ) is an isomorphism if k ≤ 2n− 2
and an epimorphism if k = 2n− 1.

Corollary 7.2.23. (a) For any space Y , and any integer k, the sequence

πk(Y )
Σ−−→ πk+1(Y )

Σ−−→ πk+2(Y )
Σ−−→ ·· ·

consists of isomorphisms from some point on.
(b) In particular, taking Y = Sn, Σ : πk+n(Sn) → πk+n+1(Sn+1) is an epimorphism

for n = k+ 1 and an isomorphism for n ≥ k+ 2.

Definition 7.2.24. The limit group in the sequence in (b) is called the stable k-stem,
denoted π s

k . ♦
We conclude by summarizing some basic facts about the homotopy groups of

spheres, a field that has been an active area of research for almost 80 years, and is
still going strong.

Theorem 7.2.25. (a) π1(S1)∼= Z and πn(S1) = 0 for n > 1.
(b) πi(Sn) = 0 for i < n.
(c) πn(Sn)∼= Z.
(d) πi(S3)∼= πi(S2) for i ≥ 3.
(e) (Serre) For n even, π2n−1(Sn)∼= Z⊕ a finite group.
(f) (Serre) Except for cases (c) and (e), πi(Sn) is a finite group.
(g) π s

1
∼= Z2, π s

2
∼= Z2, π2

3
∼= Z24.

7.3 Exercises

Exercise 7.3.1. Prove Theorem 7.1.9(4), the exactness of the homotopy sequence
of a pair.

Exercise 7.3.2. Prove Lemma 7.1.17.
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Exercise 7.3.3. Prove the claim of Example 7.2.7(3), that p : S2n+1 → CPn is a
locally trivial fiber bundle with fiber S1.

Exercise 7.3.4. Regard CPn as a subspace of CPn+1 by identifying the point
[z0, . . . ,zn] of CPn with the point [z0, . . . ,zn,0] of CPn+1. Let CP∞ =

⋃∞
n=0CPn.

Show that πk(CP∞) = Z for k = 2 and πk(CP∞) = 0 for k �= 2.



Appendix A
Elementary Homological Algebra

Homological algebra is the branch of algebra that arose out of the necessity to
provide algebraic foundations for homology theory. In this appendix we do not
propose to systematically develop homological algebra. Rather, we just wish to
develop it far enough to provide for our needs in this book. Thus, we do not advise
the reader to read it straight through – it will seem like a curious collection of
unmotivated results – but rather to refer to it as necessary.

The basic method of proof here is “diagram chasing”. We do some representative
proofs in detail but leave most of them for the reader.

Throughout this appendix R denotes an arbitrary commutative ring with 1.
We will specialize to R = Z, or a field, as necessary.

A.1 Modules and Exact Sequences

Definition A.1.1. A sequence of R-modules

· · · −→ Ai−1
ϕi−1−−−→ Ai

ϕi−−→ Ai+1
ϕi+1−−−→ Ai+2 −→ ·· ·

is exact if for each i, Ker(ϕi+1) = Im(ϕi). ♦
Remark A.1.2. In an exact sequence, Ai = 0 is equivalent to ϕi−2 : Ai−2 → Ai−1

being a surjection and ϕi+1 : Ai+1 → Ai+2 being an injection. ♦
Remark A.1.3. A sequence 0 → A → 0 is exact if and only if A = 0. A sequence

0 → A
ϕ−−→ B → 0 is exact if and only if ϕ is an isomorphism. ♦

Definition A.1.4. An exact sequence of R-modules

0 −→ A
ϕ−−→ B

ψ−−→C −→ 0

is a short exact sequence. ♦
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Remark A.1.5. This is equivalent to: ϕ is an injection, ψ is a surjection, and
Im(ϕ) = Ker(ψ). ♦
Definition A.1.6. A short exact sequence of R-modules

0 −→ A
ϕ−−→ B

ψ−−→C −→ 0

is split if Im(ϕ) = Ker(ψ) is a direct summand of B. ♦
Lemma A.1.7. Given a short exact sequence of R-modules

0 −→ A
ϕ−−→ B

ψ−−→C −→ 0

the following are equivalent:

(1) There exists a homomorphism (necessarily a surjection) α : B → A such that
α ◦ϕ = idA.

(2) There exists a homomorphism (necessarily an injection) β : C → B such that
ψ ◦β = idC.

(3) This sequence is split.

If these equivalent conditions hold then α and β are said to split (or be a splitting
of) the sequence, and

B ∼= Im(ϕ)⊕Ker(α)

∼= Ker(ψ)⊕ Im(β )
∼= A⊕C.

Lemma A.1.8 (The five lemma). Given a commutative diagram of exact
sequences

A1

f1

A2

f2

A3

f3

A4

f4

A5

f5

B1 B2 B3 B4 B5

If f1, f2, f4, and f5 all isomorphisms, then so is f3.

Proof. First we show f3 is an injection. Let x ∈ A3 with f3(x) = 0, i.e., x “goes to 0”
in B3. Then x goes to 0 in B4. Now x goes to some element y in A4. By commutativity
y goes to 0 in B4. But f4 is an isomorphism, so y = 0. Thus x goes to 0 in A4,
so by exactness x comes from some z in A2. Then z goes to some w in B2. By
commutativity w goes to 0 in B3, so w comes from some v in B1. Since f1 is an
isomorphism v comes from some u in A1. Then u goes to some t in A2 and by
commutativity t also goes to w in B2. But f2 is an isomorphism, so t = z. Thus u in
A1 goes to z in A2 which goes to x in A3. By the exactness of the top row, x = 0.



A.1 Modules and Exact Sequences 141

Next we show f3 is a surjection. Let x ∈ B3. Then x goes to some y in B4. Since
f4 is an isomorphism, y comes from some z in A4. By exactness, y goes to 0 in B5, so
z also goes to 0 in B5. But f5 is an isomorphism, so z goes to 0 in A5. By exactness,
z comes from some w in A3. Then w goes to v = f3(w) in B3. By commutativity, v
also goes to y in B4, so x− v goes to 0 in B4. Hence x− v comes from some u in
B2. Since f2 is an isomorphism, u comes from some t in A2. Then t goes to some
s in A3, and by commutativity s goes to x− v in B3, i.e., f (s) = x − v. But then
f (s+w) = x− v+ v= x. ��
Corollary A.1.9 (The short five lemma). Given a commutative diagram of short
exact sequences

0 A2 A3 A4 0

0 B2 B3 B4 0

f4f3f2

If f2 and f4 are isomorphisms, then so is f3.

Recall the following basic definition.

Definition A.1.10. An R-module M is free if there is some subset S = {mi}i∈I of M
such that every m ∈ M can be expressed uniquely as a finite sum

m = ∑
i∈I

rimi, ri ∈ R, only finitely many nonzero.

In this case, S is a basis of M. ♦
Lemma A.1.11. (a) Let C be a free R-module. Then every short exact sequence of

R-modules

0 −→ A −→ B −→C −→ 0

is split.
(b) If R = F is a field, every short exact sequence of R-modules is split.

Proof. (a) Let C have basis {ci}i∈I . For each i, let bi ∈ B with ψ(bi) = ci. Then
there is a unique map β : C → B defined by β (ci) = bi for each i, and this gives
a splitting by Lemma A.1.7.

(b) If R = F is a field, an R-module is an F-vector space, so has a basis, and so is
free.

��
We remind the reader of the construction of the dual of a module and the dual of

a map, which are at the core of cohomology.
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Definition A.1.12. Let M be an R-module. Its dual module M∗ is the R-module

M∗ = Hom(M,R),

the module of R-homomorphisms from M to R.
If f : M → N is a map of R-modules, the dual map f ∗ : N∗ → M∗ is the map

defined by

( f ∗(α))(m) = α( f (m)) for α ∈ N∗, m ∈ M. ♦
We now generalize the notions of ring and module to the graded case.

Definition A.1.13. (1) A graded commutative ring S is a ring S with 1 such that
the additive group of S decomposes as S =

⊕
i∈Z Si and the multiplication

has the property that of x ∈ S j and y ∈ Sk then xy ∈ S j+k. Also, the ordinary
commutative law for multiplication is replaced by the law

yx = (−1) jkxy for x ∈ S j, y ∈ Sk.

(2) A left module N over a graded commutative ring S is a left S -module N
such that N =

⊕
i∈Z Ni and the module structure has the property that if s ∈ S j

and n ∈ Nj+k then sn ∈ Nk.
(3) A ring homomorphism ϕ : S → T , where N =

⊕
i∈Z Si and T =

⊕
i∈Z Ti

are graded commutative rings, is a homomorphism of rings that satisfies the
additional property that if si ∈ Si, then ti = ϕ(si) ∈ Ti.

(4) A graded commutative R-algebra S is a graded commutative ring that is an
R-algebra with the property that if r ∈ R and si ∈ Si, then rsi ∈ Si.

(5) An algebra homomorphism ϕ : S → T between graded commutative
R-algebras is a ring homomorphism that is a map of algebras. ♦

(Of course, any graded commutative ring is a graded commutative Z-algebra.)

A.2 Chain Complexes

Definition A.2.1. A chain complex over R is A = {Ai,di}i∈Z a set of R-modules
Ai, and R-module homomorphisms di : Ai → Ai−1, with the property that di−1di :
Ai → Ai−2 is the 0 map for every i. ♦

Often we abbreviate di by d, and write the relation di−1di = 0 as d2 = 0. Note
that this condition implies Im(di+1)⊆ Ker(di) for every i.

Definition A.2.2. Let A be a chain complex. Then the i-th homology group Hi(A )
is the R-module

Hi(A ) = Ker(di)/ Im(di+1). ♦
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Definition A.2.3. Let a ∈ Ker(di). Then [a] denotes the image of a in Hi(A )
under the quotient map Ker(di)→ Ker(di)/ Im(di+1), and [a] is the homology class
represented by a. If α ∈ Hi(A ) and a ∈ Ker(di) with [a] = α , then a represents (or
is a representative of) α . ♦
Definition A.2.4. An element a ∈ Ai is called a chain. An element a ∈ Ker(di) is
called a cycle. An element a ∈ Im(di+1) is called a boundary. ♦
Definition A.2.5. Let A = {Ai,dA

i } and B = {Bi,dB
i } be chain complexes. A map

of chain complexes F : A →B is a collection of homomorphisms F = { fi : Ai →
Bi}i∈Z such that for each i, the following diagram commutes:

Ai

dA
i

fi
Bi

dB
i

Ai−1
fi−1

Bi−1 .

♦
Definition A.2.6. Let F : A →B be a map of chain complexes. The induced map
on homology F∗ : H∗(A ) → H∗(B) is defined as follows: F∗ = { fi : Hi(A ) →
Hi(B)}i∈Z where fi([a]) = [ fi(a)]. ♦
Lemma A.2.7. The induced map on homology F∗ is well-defined.

Proof. We must show it is independent of the choice of representative a. Thus
suppose [a] = [a′]. Then a = a′+ a′′ where a′′ ∈ Im(di+1), i.e., a′′ = di+1(a′′′) for
some a′′′. But then

fi(a) = fi(a
′+ a′′) = fi(a

′)+ fi(a
′′)

= fi(a
′)+ fi(di+1(a

′′′))

= fi(a
′)+ di+1( fi(a

′′′))

so [ fi(a)] = [ fi(a′)]. ��
Definition A.2.8. Let F : A →B and G : A →B be maps of chain complexes. A
chain homotopy between F and G is a collection of maps Φ = {ϕi : Ai → Bi+1}i∈Z
such that

dB
i+1ϕi +ϕi−1dA

i = fi − gi : Ai −→ Bi for each i ♦
Lemma A.2.9. Suppose that there is a chain homotopy Φ between F and G. Then
F∗ = G∗, i.e., fi = gi for each i.

Proof. Let a ∈ Ai be a cycle. Then

[ fi(a)] = [(gi + dB
i+1ϕi +ϕi−1dA

i )(a)]
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= [gi(a)]+ [dB
i+1ϕi(a)]+ [ϕi−1dA

i (a)]

= [gi(a)]

as dB
i+1(ϕi(a)) is a boundary and dA

i (a) = 0 since a is a cycle. ��

Theorem A.2.10. Let 0→A
F−−→B

G−−→C → 0 be a short exact sequence of chain

complexes, i.e., suppose that for each i, 0 → Ai
fi−−→ Bi

gi−−→ Ci → 0 is exact. Then
there is a long exact sequence in homology

· · · −→ Hi(A )
fi−−→ Hi(B)

gi−−→ Hi(C )
∂i−−→ Hi−1(A )−→ ·· · .

Proof. We show how to define ∂ by a “diagram chase”. The remainder of the proof
is a further diagram chase, which we omit.

We have:

0 Ai

dA
i

fi
Bi

dB
i

gi
Ci

dC
i

0

0 Ai−1
fi−1

Bi−1
gi−1

Ci−1 0

Let ci ∈ Ci be a cycle. Since gi is onto, there is an element bi ∈ Bi with gi(bi) =
ci. Let bi−1 = dB

i (bi). Then gi−1(bi−1) = gi−1dB
i (bi) = dC

i gi(bi) by commutativity
= dC

i (ci) = 0 since ci is a cycle. By exactness, there is a unique ai−1 ∈ Ai−1 with
fi−1(ai−1) = bi. Define

∂i([ci]) = [ai−1] ∈ Hi−1(A ).

��
Theorem A.2.11. Suppose there is a commutative diagram of exact sequences

· · · Ai

α2

α1
Bi

β1

γ1
Ci

ε

Ai−1

α2

· · ·

· · · Di

β2
Ei

γ2
Fi Di−1 · · ·

and suppose further that ε is an isomorphism, for each i.
Then there is a long exact sequence

· · · −→ Ai
α−−→ Bi ⊕Di

β−−→ Ei
Δ−−→ Ai−1 −→ ·· ·
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where the maps α , β , Δ are defined by:

α(q) = (α1(q),α2(q))

β (r,s) = β1(r)−β2(s)

Δ(t) = ∂1ε−1γ2(t).

Proof. We shall chase this diagram to show that the given sequence is exact.

(i) Im(α)⊆Ker(β ): Let (r,s)=α(q)=(α1(q),α2(q)) for some q. Then β (r,s)=
β1(r)−β2(s) = β1α1(q)−β2α2(q) = 0 by the commutativity of the diagram.

(ii) Im(β ) ⊆ Ker(Δ): Let t = β (r,s) = β1(r)− β2(s) for some r,s. Then Δ(t) =
∂1ε−1γ2(t) = ∂1ε−1γ2(β1(r))− ∂1ε−1γ2(β2(s)). But, by commutativity, γ1 =
ε−1γ2β1 so Δ(t) = ∂1γ1(r)− ∂1ε−1(γ2β2(s)) = 0− 0 = 0 by exactness.

(iii) Im(Δ) ⊆ Ker(α): Let q = ∂1ε−1γ2(t). Then α(q) = (α1∂1ε−1

γ2(t),α2∂1ε−1γ2(t)). But, by commutativity, ∂2 = α2∂1ε−1 so α(q) =
(α1∂1(ε−1γ2(t)),∂2γ2(t)) = (0,0) = 0.

(iv) Ker(β ) ⊆ Im(α): Suppose β (r,s) = β1(r)− β2(s) = 0. Let u = β1(r) =
β2(s). Then γ2(u) = γ2β1(r) = γ2β2(s) = 0 by exactness. By commutativity,
γ2β1(r) = εγ1(r) so εγ1(r) = 0. But ε is an isomorphism, so γ1(r) = 0.
Then, by exactness, r = α1(q0) for some q0. Let s0 = α2(q0). Then β2(s0) =
β2α2(q0) = β1α1(q0) = β1(r) = β2(s), so β2(s− s0) = 0. Then, by exactness,
s − s0 = ∂2(v) for some v. Let w = ε−1(v) and x = ∂1(w). Then α2(x) =
α2∂1(w) = ∂2ε(w) = ∂2ε(ε−1(v)) = ∂2(v) = s − s0. Set q = q0 + x. Then
α1(q) = α1(q0 + x) = α1(q0)+α1(x) = α1(q0)+α1∂1(w) = α1(q0) = r, and
α2(q) = α2(q0 + x) = α2(q0)+α2(x) = s0 +(s− s0) = s. Thus (r,s) = α(q).

(v) Ker(Δ) ⊆ Im(β ): Suppose Δ(t) = ∂1ε−1γ2(t) = 0. Then 0 = ∂1(ε−1γ2(t)) so
ε−1γ2(t)= γ1(r) for some r. Then εγ1(r)= γ2(t), and then γ2β1(r) = εγ1(r) =
γ2(t). Hence γ2(β1(r)−t) = 0 so β1(r)−t = β2(s) for some s. But then β1(r)−
β2(s) = t, so t = β (r,s).

(vi) Ker(α)⊆ Im(Δ): Suppose α(q) = 0. Then α1(q) = α2(q) = 0. Since α1(q) =
0, q = ∂1(p) for some p. Set n = ε(p). Then ∂2(n) = ∂2ε(p) = α2∂1(p) =
α2(q) = 0, so n = γ2(t) for some t. But then Δ(t) = ∂1ε−1γ2(t) = ∂1ε−1(n) =
∂1(p) = q.

��

Theorem A.2.12. Given a commutative diagram of exact sequences

· · · Bi Ai Ri Bi−1 Ai−1 Ri−1 · · ·

· · · Bi Xi Si Bi−1 Xi−1 Si−1 · · ·

· · · Ai Xi Ti Ai−1 Xi−1 Ti−1 · · ·
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where the vertical maps Bi → Bi and Xi → Xi are both identity maps, the vertical
map Bi → Ai agrees with the horizontal map Bi → Ai, and the vertical map Ai → Xi

agrees with the horizontal map Ai → Xi, for all i, there is a long exact sequence

· · · −→ Ri −→ Si −→ Ti
∂−→ Ai−1 −→ ·· ·

where the map ∂ is the composition of Ti → Ai−1 on the bottom row, followed by
the identity map from Ai−1 on the bottom row to Ai−1 on the top row, followed by
Ai−1 → Ri−1 on the top row.

Proof. We shall observe that under the hypotheses of the theorem, the diagram
continues to commute if we insert the diagonal arrows from Ai on the bottom row
to Ai on the top row, with these maps being the identity maps.

Otherwise, the proof is a very elaborate diagram chase, which we omit. ��
A finitely generated abelian group A is isomorphic to F ⊕T where F is a free

abelian group of well-defined rank r (i.e., F is isomorphic to Z
r) and T is a torsion

group. In this case we define the rank of A to be r.

Theorem A.2.13. Let 0 → Cn
∂n−→ Cn−1

∂n−1−−→ ·· · → C1
∂1−→ C0 → 0 be a chain

complex with each Ci a finitely generated free abelian group of rank di. Let Hi be
the i-th homology group of this chain complex, i = 0, . . . ,n. Then

n

∑
i=0

(−1)i rank Hi =
n

∑
i=0

(−1)i rank Ci.

Proof. Although, with a little care, this theorem can be proven directly, it is easiest
to tensor everything with Q. We then obtain a chain complex

0 −→Vn −→Vn−1 −→ ·· · −→V1 −→V0 −→ 0

with Vi = Ci ⊗Q a rational vector space of dimension di. It is easy to check that if
{Ki} are the homology groups of the new chain complex, then Ki = Hi⊗Q for each
i. In particular, if ri = rank Hi, then Ki is a rational vector space of dimension ri.
Hence it suffices to prove that

n

∑
i=0

(−1)ri =
n

∑
i=0

(−1)di .

We prove this by induction on n. If n = 0, this is trivial. The chain complex is
then 0→V0 → 0 which has the single nonzero homology group K0 =V0, so certainly
r0 = d0.

Suppose it is true for n− 1, and all chain complexes.
We have ∂n : Vn → Im(Vn) = V ′

n−1 ⊆ Ker(∂n−1) ⊆ Vn−1. Let V ′′
n−1 be a comple-

ment of V ′
n−1 in Ker(∂n−1) and let V ′′′

n−1 be a complement of Ker(∂n−1) in Vn−1.
Then
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Vn−1 =V ′
n−1 ⊕V ′′

n−1⊕V ′′′
n−1.

Let these three subspaces have dimensions d′
n−1, d′′

n−1, d′′′
n−1, respectively.

Then ∂n−1|V ′′′
n−1 is an injection and ∂n−1(V ′′′

n−1) = ∂n−1(Vn−1). Thus we have a
chain complex

0 −→V ′′′
n−1 −→Vn−2 −→ ·· · −→V1 −→V0 −→ 0

whose homology in dimension n− 1 is 0, and whose homology in dimension i <
n− 1 is Ki. By the n− 1 case, we have

n−2

∑
i=0

(−1)iri =

(
n−2

∑
i=0

(−1)idi

)

+(−1)n−1(d′′′
n−1

)
.

Now Kn−1 = Ker(∂n−1)/ Im(∂n) is isomorphic to V ′′
n−1, so rn−1 = d′′

n−1. Hence

n−1

∑
i=0

(−1)iri =

(
n−2

∑
i=0

(−1)idi

)

+(−1)n−1(d′′
n−1 + d′′′

n−1

)
.

Now Kn = Ker(∂n). Since Im(∂n) has dimension d′
n−1, Ker(∂n) has dimension

dn − d′
n−1, i.e., rn = dn − d′

n−1. Hence

n

∑
i=0

(−1)iri =

(
n−2

∑
i=0

(−1)idi

)

+(−1)n−1(d′′
n−1 + d′′′

n−1

)
+(−1)n(dn − d′

n−1

)

=

(
n−2

∑
i=0

(−1)idi

)

+(−1)n−1(d′
n−1 + d′′

n−1+ d′′′
n−1

)
+(−1)ndn

=
n

∑
i=0

(−1)idi

as claimed.
Thus by induction we are done. ��

A.3 Tensor Product, Hom, Tor, and Ext

In this section we recapitulate the basic properties of the tensor product and Hom,
and introduce Tor and Ext . These constructions depend on the ring R, but we assume
R is fixed, and in the interests of simplicity suppress R from our notation. Except in
Lemmas A.3.1 and A.3.2, we assume that R is a PID.

We begin with the easiest situation.
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Lemma A.3.1. Let 0 → A → B → C → 0 be a split short exact sequence of
R-modules. Then for any R-module M,

(a) The sequence 0 → A⊗M → B⊗M →C⊗M → 0 is exact, and
(b) The sequence 0 → Hom(C,M)→ Hom(B,M)→ Hom(A,M)→ 0 is exact.

Proof. This follows from Lemma A.1.7 and the facts that (A⊕C)⊗M ∼= (A⊗M)⊕
(C⊗M) and Hom(A⊕C,M)∼= Hom(A,M)⊕Hom(C,M). ��
Lemma A.3.2. Let 0 → A → B →C → 0 be a short exact sequence of R-modules.
Then for any R-module M

(a) The sequence A⊗M → B⊗M →C⊗M → 0 is exact
(b) The sequence 0 → Hom(C,M)→ Hom(B,M)→ Hom(A,M) is exact.

Note the difference between the split and the nonsplit case: In the nonsplit case
we do not in general obtain five-term exact sequences. We now introduce Tor and
Ext, which measure inexactness. But first we must introduce free resolutions.

Lemma A.3.3. Let M be an R-module. Then there is a short exact sequence

0 −→ F1
ϕ−−→ F0

ψ−−→ M −→ 0

where F0 and F1 are free R-modules.

Proof. We can certainly find a free module F0 and an epimorphism ψ : F0 → M,
as follows: Let {mi}i∈I generate M. (We can certainly find a set of generators. For
example, we could choose this set to be all the elements of M.) Let F0 be the free
R-module with basis { f}i∈I and let ψ : F0 → M be defined by ψ( fi) = mi for each
i ∈ I.

Let F1 = Ker(ψ) and let ϕ : F1 → F0 be the inclusion. Then we certainly have a
short exact sequence

0 −→ F1
ϕ−−→ F0

ψ−−→ M −→ 0.

Furthermore, since R is a PID, every submodule of a free module is free, so F1 is
free as well. ��
Remark A.3.4. Note we have crucially used the hypothesis that R is a PID. (It would
take us far afield to consider what happens when R is not.) ♦

Definition A.3.5. A sequence of R-modules as in Lemma A.3.3 is a free resolution
of M. ♦
Lemma A.3.6. Let M and N be R-modules. Then there is a well-defined R-module
T (i.e., independent of the choice of F1 and F0) such that, if 0 → F1 → F0 → M → 0
is a free resolution of M, the sequence

0 −→ T −→ F1 ⊗N −→ F0 ⊗N −→ M⊗N −→ 0

is exact.
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Definition A.3.7. The module T of Lemma A.3.6 is the torsion product of M and N,

T = Tor(M,N). ♦
We summarize the properties of the torsion product.

Lemma A.3.8. (a) If M is free, Tor(M,N) = 0 for every N.
(b) Tor(M1 ⊕M2,N)∼= Tor(M1,N)⊕Tor(M2,N).
(c) Tor(M,N1 ⊕N2)∼= Tor(M,N1)⊕Tor(M,N2).
(d) If N is free, Tor(M,N) = 0 for every M.
(e) Let M be a cyclic R-module, M ∼= R/IM, IM an ideal of R, and let N be a

cyclic R-module, N ∼= R/IN, IN an ideal of R. Let IM = (rM), i.e., let IM be
the principal ideal consisting of the multiples of the element rM of R and
similarly let IN = (rN). If rM = 0 or rN = 0, then Tor(M,N) = 0. Otherwise,
Tor(M,N) ∼= R/IT where IT = (rT ) and rT = gcd(rM,rN).

(f) If M is torsion-free, Tor(M,N) = 0 for every N.
(g) If N is torsion-free, Tor(M,N) = 0 for every M.
(h) Tor(M,N) ∼= Tor(N,M).
(i) If R = F is a field, Tor(M,N) = 0 for every M,N.

Lemma A.3.9. Let 0 → A → B →C → 0 be a short exact sequence of R-modules.
Then for any R-module N, the sequence

0 → Tor(A,N)→ Tor(B,N)→ Tor(C,N)→ A⊗N → B⊗N →C⊗N → 0

is exact.

Lemma A.3.10. Let M and N be R-modules. Then there is a well-defined R-module
E (i.e., independent of the choice of F1 and F0) such that, if 0 → F1 → F0 → M → 0
is a free resolution of M, the sequence

0 −→ Hom(M,N) −→ Hom(F0,N)−→ Hom(F1,N)−→ E −→ 0

is exact.

Definition A.3.11. The module E of Lemma A.3.10 is the extension product of M
and N,

E = Ext(M,N). ♦
We summarize the properties of the extension product.

Lemma A.3.12. (a) If M is free, Ext(M,N) = 0 for every N.
(b) Ext(M1 ⊕M2,N)∼= Ext(M1,N)⊕Ext(M2,N).
(c) Ext(M,N1 ⊕N2)∼= Ext(M,N1)⊕Ext(M,N2).
(d) Let M be a cyclic R-module, R ∼= R/IM with IM = (rM). Then for any

R-module N,

Ext(M,N) ∼= N/rMN
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where for r ∈ R, rN = {rn | n ∈ N} ⊆ N. In particular,

Ext(M,R) ∼= R/rMR ∼= M.

If N is a cyclic R-module, N ∼= R/IN with IN = (rN), then

Ext(M,N) ∼= R/rER

where rE = gcd(rM,rN). As a special case

Ext(M,N) = 0

if rM and rN are relatively prime.

Lemma A.3.13. Let 0 → A → B →C → 0 be a short exact sequence of R-modules.
Then for any R-module N, the sequences

0 −→ Hom(C,N)−→ Hom(B,N)−→ Hom(A,N)

−→ Ext(C,N) −→ Ext(B,N)−→ Ext(A,N)−→ 0

and

0 −→ Hom(N,A)−→ Hom(N,B) −→ Hom(N,C)

−→ Ext(N,A)−→ Ext(N,B)−→ Ext(N,C)−→ 0

are both exact.

(We need almost all of the results of this section to compute Tor and Ext ,
which enter into computations of homology and cohomology. We do not need
Lemmas A.3.9 and A.3.13, but have given them to complete the picture.)

Remark A.3.14. Note that if R = F is a field, this section is entirely superfluous. For
in this case every short exact sequence of R-modules is split (Lemma A.1.11), and
so Tor(M,N) = 0 and Ext(M,N) = 0 for any two R-modules M and N. ♦



Appendix B
Bilinear Forms

In this appendix we introduce bilinear forms and we state some of the basic
classification theorems.

B.1 Definitions

Definition B.1.1. Let R be a commutative ring and let M be a free R-module.
A bilinear form

〈 , 〉 : M×M −→ R

is a function that is linear in both arguments, i.e., with the property that

(1) 〈r1m1 + r2m2,m〉= r1〈m1,m〉+ r2〈m2,m〉
(2) 〈m,r1m1 + r2m2〉= r1〈m,m1〉+ r2〈m,m2〉
for all r1,r2 ∈ R and all m1,m2,m ∈ M. ♦

Note that bilinearity is precisely the condition we need to obtain

〈 , 〉 : M⊗M −→ R.

The appropriate equivalence relation on bilinear forms is that of isometry.

Definition B.1.2. Let 〈 , 〉 be a bilinear form on M and 〈〈 , 〉〉 be a bilinear form
on N. An isometry between these two forms is an isomorphism ϕ : M → N such that

〈〈ϕ(m1),ϕ(m2)〉〉= 〈m1,m2〉 for all m1,m2 ∈ M.

In this situation, the two forms are said to be isometric. ♦
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Definition B.1.3. Let 〈 , 〉 : M⊗M → R be a bilinear form. Then 〈 , 〉 defines a map
α : M → M∗ = Hom(M,R) by

α(m1)(m2) = 〈m1,m2〉 for all m2 ∈ M

and a map β : M → M∗ by

β (m2)(m1) = 〈m1,m2〉 for all m1 ∈ M.

The form 〈 , 〉 is nonsingular if α and β are isomorphisms. ♦
Definition B.1.4. The bilinear form 〈 , 〉 is symmetric if

〈m1,m2〉= 〈m2,m1〉

for all m1,m2 ∈ M, and is skew-symmetric if

〈m1,m2〉=−〈m2,m1〉
for all m1,m2 ∈ M. ♦
Example B.1.5. Let M = Rn and let A be any n× n matrix with entries in R. Then
[A] is the bilinear form

[A] = 〈 , 〉 : M×M −→ R by 〈x,y〉= xtAy

is a bilinear form. It is symmetric if A = At and skew-symmetric if A = −At . It is
nonsingular if A is nonsingular (i.e., invertible). ♦
Remark B.1.6. In the situation of Example B.1.5, either α an isomorphism or β an
isomorphism implies A nonsingular, so in the finite rank case it is only necessary to
check one of these conditions. ♦
Remark B.1.7. Upon choosing a basis of M, a module of finite rank, every bilinear
form arises in this way. ♦

Here is a simple but basic construction.

Definition B.1.8. Let 〈 , 〉 be a bilinear form on M and let 〈 , 〉′ be a bilinear form
on M′. Their direct sum 〈 , 〉′′ = 〈 , 〉⊕ 〈 , 〉′ is the bilinear form on M′′ = M ⊕M′
given by

〈m1 +m′
1,m2 +m′

2〉′′ = 〈m1,m2〉+ 〈m′
1,m

′
2〉′

for all m1,m2 ∈ M and m′
1,m

′
2 ∈ M′. Also, k〈 , 〉 denotes 〈 , 〉⊕ · · · ⊕ 〈 , 〉, where

there are k summands. ♦
Remark B.1.9. If, in the notation of Example B.1.5, 〈 , 〉= [A] and 〈 , 〉′ = [A′], then
〈 , 〉′′ = 〈 , 〉⊕ 〈 , 〉′ = [A′′] with A′′ the block diagonal matrix A′′ =

[
A 0
0 A′

]
. ♦
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B.2 Classification Theorems

We now give some of the basic classification theorems for nonsingular bilinear
forms. First we consider skew-symmetric forms.

Theorem B.2.1. Let R = Z or a field of characteristic not equal to two. Then any
nonsingular skew-symmetric bilinear form on a free R-module M of finite rank is
isometric to

k

[
0 1
−1 0

]

for some integer k. In particular, if M admits a nonsingular skew-symmetric bilinear
form, then rank(M) is even.

Next we consider symmetric forms over the real numbers R.

Definition B.2.2. A symmetric bilinear form 〈 , 〉 on anR-vector space V is positive
definite if 〈v,v〉 > 0 for every v ∈ V , v �= 0, and is negative definite if 〈v,v〉 < 0 for
every v ∈V , v �= 0. ♦
Lemma B.2.3. Let 〈 , 〉 be a nonsingular symmetric bilinear form on a real vector
space V of dimension n. Let V+ be a subspace of V of largest possible dimension
with 〈 , 〉 restricted to V+ positive definite and let V− be a subspace of V of largest
possible dimension with 〈 , 〉 restricted to V− negative definite. Then V =V+⊕V−.

Remark B.2.4. The spaces V+ and V− are in general not unique. ♦
Theorem B.2.5 (Sylvester’s Law of Inertia). Let 〈 , 〉 be a nonsingular symmetric
bilinear form on a real vector space V of dimension t. Let V+ and V− be as in
Lemma B.2.3, and let r = dim(V+) and s = dim(V−). Then 〈 , 〉 is isometric to

r[1]+ s[−1].

Definition B.2.6. In the situation of Theorem B.2.5, the signature σ(〈 , 〉) =
r− s. ♦
Remark B.2.7. Since r+ s= t, a nonsingular symmetric bilinear form 〈 , 〉 on a real
vector space V is determined up to isometry by dim(V ) and σ(〈 , 〉). ♦
Lemma B.2.8. Let 〈 , 〉 be a nonsingular symmetric bilinear form on a real vector
space V of even dimension t. Suppose that V has a subspace V0 of dimension t/2
such that the restriction of 〈 , 〉 to V0 is identically 0. Then σ(〈 , 〉) = 0.

Proof. If v ∈V+∩V0, and v �= 0, then 〈v,v〉> 0 as v ∈V+, but 〈v,v〉= 0 as v ∈V0, so
this is impossible. Hence V+∩V0 = {0}, and so r+ t/2≤ t. Similarly V−∩V0 = {0}
so s+ t/2 ≤ t. But r+ s = t, so we must have r = s = t/2, and hence σ(〈 , 〉) = 0.��



Appendix C
Categories and Functors

Category theory provides a very convenient, and for some purposes essential,
formulation for algebraic topology. We have minimized its use in this book, but
we give the basics here.

C.1 Categories

Definition C.1.1. A category C consists of a class of objects Obj(C) =
{A,B,C, . . .} and for any ordered pair (A,B) of objects a class of morphisms
Mor(A,B), with the following properties:

(1) Given any f ∈ Mor(A,B) and g ∈ Mor(B,C) there is their composition
g f ∈ Mor(A,C), and furthermore composition is associative, i.e., given f ∈
Mor(A,B), g ∈ Mor(B,C), and h ∈ Mor(C,D), then h(g f ) = (hg) f .

(2) Given any object A of C there is the identity morphism idA ∈ Mor(A,A), and,
given any pair of objects A and B, if f ∈ Mor(A,B), then f idA = f = idB f . ♦

Example C.1.2. (1) Obj(C) = {sets} and for X ,Y ∈C, Mor(X ,Y )= {functions f :
X → Y}.

(2) Obj(C) = {topological spaces} and for X ,Y ∈ C, Mor(X ,Y ) = {continuous
maps f : X → Y}.

(3) Obj(C) = {(X ,A) | X is a topological space and A is a subspace of X} and
Mor((X ,A),(Y,B)) = {continuous maps f : X → Y with f (A)⊆ B}.

(4) Obj(C) = {abelian groups} and for G,H ∈ C, Mor(G,H) = {group
homomorphisms f : G → H}.

(5) Obj(C) = {graded abelian groups {Gi}i∈Z} and for {Gi},{Hi} ∈ C,
Mor(G,H) = {{ fi} | fi : Gi → Hi is a group homomorphism}.
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156 C Categories and Functors

(6) Obj(C) = {chain complexes {Gi, ∂ G
i : Gi → Gi−1}} and Mor({Gi,∂ G

i },
{Hi,∂ H

i }) = {{ fi} | fi : Gi → Hi is a group homomorphism with ∂ H
i−1 fi =

fi−1∂ G
i }.

(7) Obj(C) = {graded rings {Gi}}. A graded ring has the additive structure of
a graded abelian group and a multiplicative structure uG : Gi ⊗G j → Gi+ j

satisfying:

(a) There is an identity element 1G ∈ G0.
(b) Multiplication is commutative in the sense that if α ∈ Gi and β ∈ G j, then

αβ = (−1)i jβ α .

Mor({Gi},{Hi}) = {{ f i}} where { f i} is a homomorphism of graded
rings, i.e., a morphism of graded abelian groups that is also a homomorphism
of rings with identity.

(8) Obj(C) = {CW-complexes} and Mor(X ,Y ) = {cellular maps f : X → Y},
where f : X → Y is cellular if f (Xn)⊆ Y n for every n.

(9) Obj(C) = {pointed spaces}= {(X ,x0)}, i.e., a nonempty topological space X
and a point x0 ∈ X , and Mor((X ,x0),(Y,y0)) = { f : X → Y | f (x0) = y0}.

(10) Obj(C) = {groups} and Mor(G,H) = {group homomorphisms f : G → H}.
(11) Obj(C) = {cochain complexes {Gi, δ i

G : Gi → Gi+1}} and Mor({Gi,
∫ i

G},
{Hi,δ i

H}) = {{ f i} | f i : Gi → Hi is a group homomorphism with δ i+1
H fi =

fi+1δ i
G}. ♦

C.2 Functors

Given two categories C and D, we may regard them each as objects and ask for the
appropriate notion of a function between them. This notion is that of a functor, and
comes in two varieties.

Definition C.2.1. Let C and D be categories. A covariant functor T : C → D
consists of:

(1) A function T : Obj(C)→ Obj(D).
(2) A function T : Mor(C1,C2)→ Mor(D1,D2), where C1 and C2 are objects of C,

and D1 = T (C1), D2 = T (C2), objects of D, with the properties:

(a) T (idC) = idT (C) for any object C of C.
(b) If C1, C2, and C3 are objects of C, f ∈Mor(C1,C2), and g∈Mor(C2,C3),

then T (g f ) = T (g)T ( f ).

A contravariant functor T : C→D consists of:

(1) A function T : Obj(C)→ Obj(D).
(2) A function T : Mor(C1,C2)→ Mor(D2,D1), where C1 and C2 are objects of C,

and D1 = T (C1), D2 = T (C2), objects of D, with the properties:
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(a) T (idC) = idT (C) for any object C of C.
(b) If C1, C2, and C3 are objects of C, f ∈Mor(C1,C2), and g∈Mor(C2,C3),

then T (g f ) = T ( f )T (g). ♦
In the following example, we just give the objects of the categories involved.

The morphisms should be clear.

Example C.2.2. (1) Let C = {pointed spaces} and D = {groups}. We have the
covariant functor T : C → D given by T (X ,x0) = π1(X ,x0). If f : (X ,x0) →
(Y,y0) then T ( f ) = f∗ : π1(X ,x0)→ π1(Y,y0).

(2) Let C = {(X ,A)} pairs of topological spaces and let D = {graded abelian
groups}. We have the covariant functor T : C → D given by T (X ,A) =
{Hi(X ,A)}, and if f : (X ,A) → (Y,B), T ( f ) = { fi : Hi(X ,A) → Hi(Y,B)},
for any fixed homology theory. Similarly, we have the contravariant functor
T : C→D given by T (X ,A) = {Hi(X ,A)}, and if f : (X ,A)→ (Y,B), T ( f ) =
{ f i : Hi(Y,B)→ Hi(X ,A)}, for any fixed cohomology theory.

(3) In this and the remaining examples, we simply describe what T does on objects;
its effect on morphisms should then be clear.

Let C= {chain complexes} and D= {graded abelian groups}. Then T :C→
D by T ({Ci}) = {Hi} where {Hi} are the homology groups of {Ci}. Similarly,
if C = {cochain complexes} we have T : C → D by T ({Ci}) = {Hi} where
{Hi} are the cohomology groups of {Ci}. Note in both cases T is covariant.

(4) Let C = {chain complexes} and D = {cochain complexes}. Let T : C→D be
the contravariant functor given by T ({Ci}) = the dual cochain complex {Ci =
Hom(Ci,Z)}.

(5) Let C= {topological pairs (X ,A)} and let D= {chain complexes}. Let T :C→
D be the covariant functor given by T (X ,A) = {Ci(X ,A)}, the singular chain
complex of the pair (X ,A).

(6) Let C = {(X ,A)} pairs of topological spaces and let D = {graded rings}. We
have the contravariant functor T : C→D given by T (X ,A) = {Hi(X ,A)} where
Hi(X ,A) denotes singular cohomology. (We have constructed a ring structure
on singular cohomology in Sect. 5.6.)

(7) Let C = {CW-complexes} and D = {graded abelian groups}. Then T : C →
D by T (X) = {Hcell

i (X)} is a covariant functor and T : C → D by T (X) =
{Hi

cell(X)} is a contravariant functor. Note that f ∈ Mor(X ,Y ) induces maps on
cellular homology or cohomology as by the definition of C, Mor(X ,Y ) consists
of cellular maps. ♦

Remark C.2.3. Suppose that Hi(X ,A) is singular homology, and that Hi(X ,A) is
singular cohomology. Then the covariant functor in Example C.2.2(2) is in an
obvious way the composition of the covariant functor in (5) with the covariant
functor in (3), and the contravariant functor in (2) is in an obvious way the
composition of the covariant functor in (5), the contravariant functor in (4), and the
covariant functor in (3). Note that the functors in (3) and (4) are purely algebraic. It
is the functor in (5) that makes the connection between topology and algebra. ♦
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Symbols
1-complex, 15
n-connected, 136
n-simple, 131

A
action

free, 8
properly discontinuous, 8

action of fundamental group on higher
homotopy groups, 131

adjoining an n-cell, 39
antipodal map, 37
atlas, 95
attaching map, 39

B
Baer, 74
bilinear form, 151

(skew)-symmetric, 152
nonsingular, 152
nonsingular skew-symmetric, 153
nonsingular symmetric, 153
positive/negative definite, 153
signature of nonsingular symmetric, 153

bilinear forms
direct sum of, 152
isometry between, 151

Borsuk-Ulam theorem, 91
boundary, 143
boundary map, 57, 129
Brouwer fixed point theorem, 36

C
category, 155
cell, 39
cellular approximation theorem, 46
cellular map, 45, 46
chain, 143
chain complex, 41, 142

cellular, 41
singular, 57

chain complexes
map of, 143

chain homotopy, 143
characteristic map, 39
closure-finiteness, 39
cochain complex

cellular, 48
dual, 73

cohomology group
reduced, 32

cohomology theory, 31
cellular, 48
ordinary, 73

collar, 27
cone, 4
contractible, 4
coordinate patch, 95
covering homotopy property, 9, 133
covering projection, 8, 133

universal, 11
covering space, 8, 45, 132

regular, 12
covering translation, 12
CW-complex, 38, 39

n-dimensional, 40
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CW-complex (cont.)
finite, 40, 44
finite dimensional, 41, 42

CW-pair, 39
CW-structure, 39
cycle, 143

D
deformation retract, 3

strong, 32
degree, 37, 47, 64, 126, 136
dimension axiom, 24, 31

E
Eilenberg-Steenrod axioms, 23, 30
Eilenberg-Zilber theorem, 70, 82
Euler, 44
Euler characteristic, 44, 45, 78, 93, 115, 118
evaluation map, 75, 76
exact sequence, 139

short, 139
split short, 140, 141

excision, 24, 31, 32, 46
excisive, 27, 38, 65, 77
excisive couple, 24, 32, 72
excisive map, 24
Ext, or extension product, 147, 149

F
fiber bundle, 133, 134

section of, 133, 134
fibration, 133
finite type, 61
five lemma, 140

short, 141
free group, 15
Freudenthal suspension theorem, 137
functor

contravariant, 156
covariant, 156

fundamental group, 5
Fundamental Theorem of Algebra, 22, 53

G
geometric meaning of H0(X), 61
geometric meaning of H1(X), 62
graded commutative ring, 142

H
Hawaiian earring, 20
Hom, 147

homology
cellular, 42
ordinary, 42

homology class
representative of, 143

homology group, 142
reduced, 26, 28

homology groups of spheres, 36
homology sequence

long exact, 24
homology theory, 23

coefficient group of, 24
compactly supported, 25, 41, 42, 93
generalized, 24
ordinary, 25
singular, 55, 93

homotopy, 2
free, 19

homotopy equivalent, 3
homotopy exact sequence, 134
homotopy group, 127

relative, 127
homotopy lifting property, 9
homotopy sequence, 130
homotopy type, 4
Hopf, 136
Hurewicz, 136
Hurewicz map, 136

I
induced map, 7, 58, 143
Invariance of domain, 37

J
join, 93

K
Künneth formula, 69, 71, 72, 79

L
Lefschetz duality, 113, 115
long exact cohomology sequence, 31
long exact homology sequence, 144
long exact sequence, 144, 146

M
Möbius strip, 110
manifold, 95

G-orientable/nonorientable, 98
G-orientation of, 98
first Stiefel-Whitney class of, 102, 125
fundamental cohomology class of, 106
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fundamental homology class of, 106
index of, 118
intersection form of, 118
local G-orientation on, 97
local orientation on, 99
nonbounding, 115, 119
nonorientable, 101
orientable, 100–102, 107, 125
orientable/nonorientable, 99, 110
orientation character on, 101, 102
orientation of, 99
signature of, 118

manifold with boundary, 96
induced orientation of boundary, 104
orientable, 102
orientation of, 102

manifolds
connected sum of, 121

mapping cone, 33
mapping torus, 125
Mayer-Vietoris sequence, 28–30, 32, 93
Mayer-Vietoris theorem, 28, 53
module

dual of, 142
free, 141
free resolution of, 148

O
ordinary cohomology theory with coefficients,

74
ordinary homology theory with coefficients, 67

P
Platonic solid, 45, 54
Poincaré duality, 112, 113
pointed set, 127
product

cap, 81, 85–88
cross, 69, 70, 81–83, 86
cup, 81, 85–88
slant, 84, 86

product space, 7, 54, 69, 131
projective space, 49

complex, 50, 90, 93, 114, 124, 133
real, 50, 68, 77, 90, 93, 112, 114, 133

R
rose, 14, 45

S
Serre, 137
simply connected, 7, 100
singular n-boundaries, 57
singular n-coboundaries, 73
singular n-cocycles, 73
singular n-cycles, 57
singular chain

support of, 60
singular cohomology, 72, 73
singular cohomology group, 73
singular cohomology with coefficients, 74
singular cube, 56
singular homology, 57
singular homology group, 57
singular homology theory with coefficients, 67
space

category of, 93
cup length of, 93

standard cube, 55
boundary of, 56

standard generators, 38
suspension, 4, 29, 125

reduced, 33
Sylvester’s Law of Inertia, 153

T
tensor product, 147
topological group, 8
Tor, or torsion product, 147, 149
tree, 16

U
unique path lifting, 8
Universal coefficient theorem, 67, 75, 76, 78

V
van Kampen’s theorem, 13

W
weak topology, 39
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